A276871
Sums-complement of the Beatty sequence for sqrt(5).
Original entry on oeis.org
1, 10, 19, 28, 37, 48, 57, 66, 75, 86, 95, 104, 113, 124, 133, 142, 151, 162, 171, 180, 189, 198, 209, 218, 227, 236, 247, 256, 265, 274, 285, 294, 303, 312, 323, 332, 341, 350, 359, 370, 379, 388, 397, 408, 417, 426, 435, 446, 455, 464, 473, 484, 493, 502
Offset: 1
The Beatty sequence for sqrt(5) is A022839 = (0,2,4,6,8,11,13,15,...), with difference sequence s = A081427 = (2,2,2,2,3,2,2,2,3,2,...). The sums s(j)+s(j+1)+...+s(k) include (2,3,4,5,6,7,8,9,11,12,...), with complement (1,10,19,28,37,...).
-
z = 500; r = Sqrt[5]; b = Table[Floor[k*r], {k, 0, z}]; (* A022839 *)
t = Differences[b]; (* A081427 *)
c[k_, n_] := Sum[t[[i]], {i, n, n + k - 1}];
u[k_] := Union[Table[c[k, n], {n, 1, z - k + 1}]];
w = Flatten[Table[u[k], {k, 1, z}]]; Complement[Range[Max[w]], w]; (* A276871 *)
A276874
Sums-complement of the Beatty sequence for sqrt(8).
Original entry on oeis.org
1, 4, 7, 10, 13, 18, 21, 24, 27, 30, 35, 38, 41, 44, 47, 52, 55, 58, 61, 64, 69, 72, 75, 78, 81, 86, 89, 92, 95, 100, 103, 106, 109, 112, 117, 120, 123, 126, 129, 134, 137, 140, 143, 146, 151, 154, 157, 160, 163, 168, 171, 174, 177, 180, 185, 188, 191, 194
Offset: 1
The Beatty sequence for sqrt(8) is A022842 = (0,2,5,8,11,14,16,...), with difference sequence s = A276858 = (2,3,3,3,3,2,3,3,3,3,3,2,3,3,3,3,3,2,3,...). The sums s(j)+s(j+1)+...+s(k) include (2,3,5,6,8,9,11,12, 14,...), with complement (1,4,7,10,13,18,...)
-
z = 500; r = Sqrt[8]; b = Table[Floor[k*r], {k, 0, z}]; (* A022842 *)
t = Differences[b]; (* A276858 *)
c[k_, n_] := Sum[t[[i]], {i, n, n + k - 1}];
u[k_] := Union[Table[c[k, n], {n, 1, z - k + 1}]];
w = Flatten[Table[u[k], {k, 1, z}]]; Complement[Range[Max[w]], w] (* A276874 *)
Showing 1-2 of 2 results.
Comments