A276859 First differences of the Beatty sequence A022843 for e.
2, 3, 3, 2, 3, 3, 3, 2, 3, 3, 2, 3, 3, 3, 2, 3, 3, 2, 3, 3, 3, 2, 3, 3, 2, 3, 3, 3, 2, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 2, 3, 3, 3, 2, 3, 3, 2, 3, 3, 3, 2, 3, 3, 2, 3, 3, 3, 2, 3, 3, 2, 3, 3, 3, 2, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 2, 3, 3, 3, 2
Offset: 1
Links
- Clark Kimberling, Table of n, a(n) for n = 1..10000
Programs
-
Maple
A276859:=n->floor(n*exp(1))-floor((n-1)*exp(1)): seq(A276859(n), n=1..200); # Wesley Ivan Hurt, Jan 10 2017
-
Mathematica
z = 500; r = E; b = Table[Floor[k*r], {k, 0, z}] (* A022843 *) Differences[b] (* A276859 *) Differences[Floor[E*Range[0,90]]] (* Harvey P. Dale, Nov 24 2016 *)
Formula
a(n) = floor(n*r) - floor(n*r - r), where r = e, n >= 1.