A276871
Sums-complement of the Beatty sequence for sqrt(5).
Original entry on oeis.org
1, 10, 19, 28, 37, 48, 57, 66, 75, 86, 95, 104, 113, 124, 133, 142, 151, 162, 171, 180, 189, 198, 209, 218, 227, 236, 247, 256, 265, 274, 285, 294, 303, 312, 323, 332, 341, 350, 359, 370, 379, 388, 397, 408, 417, 426, 435, 446, 455, 464, 473, 484, 493, 502
Offset: 1
The Beatty sequence for sqrt(5) is A022839 = (0,2,4,6,8,11,13,15,...), with difference sequence s = A081427 = (2,2,2,2,3,2,2,2,3,2,...). The sums s(j)+s(j+1)+...+s(k) include (2,3,4,5,6,7,8,9,11,12,...), with complement (1,10,19,28,37,...).
-
z = 500; r = Sqrt[5]; b = Table[Floor[k*r], {k, 0, z}]; (* A022839 *)
t = Differences[b]; (* A081427 *)
c[k_, n_] := Sum[t[[i]], {i, n, n + k - 1}];
u[k_] := Union[Table[c[k, n], {n, 1, z - k + 1}]];
w = Flatten[Table[u[k], {k, 1, z}]]; Complement[Range[Max[w]], w]; (* A276871 *)
A276889
Sums-complement of the Beatty sequence for sqrt(2) + sqrt(3).
Original entry on oeis.org
1, 2, 5, 8, 11, 14, 17, 20, 21, 24, 27, 30, 33, 36, 39, 42, 43, 46, 49, 52, 55, 58, 61, 64, 65, 68, 71, 74, 77, 80, 83, 86, 87, 90, 93, 96, 99, 102, 105, 108, 109, 112, 115, 118, 121, 124, 127, 130, 131, 134, 137, 140, 143, 146, 149, 150, 153, 156, 159, 162
Offset: 1
The Beatty sequence for sqrt(2) + sqrt(3) is A110117 = (0,3,6,9,12,15,18,22,...), with difference sequence s = A276870 = (3,3,3,3,3,3,4,3,3,3,3,3,3,4,3,...). The sums s(j)+s(j+1)+...+s(k) include (3,4,6,7,9,10,...), with complement (1,2,5,8,11,14,17,20,21,...).
-
z = 500; r = Sqrt[2] + Sqrt[3]; b = Table[Floor[k*r], {k, 0, z}]; (* A110117 *)
t = Differences[b]; (* A276870 *)
c[k_, n_] := Sum[t[[i]], {i, n, n + k - 1}];
u[k_] := Union[Table[c[k, n], {n, 1, z - k + 1}]];
w = Flatten[Table[u[k], {k, 1, z}]]; Complement[Range[Max[w]], w]; (* A276889 *)
Showing 1-2 of 2 results.
Comments