cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276914 Subsequence of triangular numbers obtained by adding a square and two smaller triangles, a(n) = n^2 + 2*A000217(A052928(n)).

Original entry on oeis.org

0, 1, 10, 15, 36, 45, 78, 91, 136, 153, 210, 231, 300, 325, 406, 435, 528, 561, 666, 703, 820, 861, 990, 1035, 1176, 1225, 1378, 1431, 1596, 1653, 1830, 1891, 2080, 2145, 2346, 2415, 2628, 2701, 2926, 3003, 3240, 3321, 3570, 3655, 3916, 4005, 4278, 4371, 4656
Offset: 0

Views

Author

Daniel Poveda Parrilla, Sep 22 2016

Keywords

Comments

All terms of this sequence are triangular numbers. Graphically, for each term of the sequence, one corner of the square will be part of the corresponding triangle's hypotenuse if the term is an odd number. Otherwise, it will not be part of it.
a(A276915(n)) is a triangular pentagonal number.
a(A079291(n)) is a triangular square number, as A275496 is a subsequence of this.

Crossrefs

Programs

  • Magma
    [n*(2*n+(-1)^n): n in [0..40]]; // G. C. Greubel, Aug 19 2022
    
  • Mathematica
    Table[n (2 n + (-1)^n), {n, 0, 48}] (* Michael De Vlieger, Sep 23 2016 *)
  • PARI
    concat(0, Vec(x*(1+9*x+3*x^2+3*x^3)/((1-x)^3*(1+x)^2) + O(x^50))) \\ Colin Barker, Sep 23 2016
    
  • SageMath
    [n*(2*n+(-1)^n) for n in (0..40)] # G. C. Greubel, Aug 19 2022

Formula

a(n) = n^2 + 2*A000217(A052928(n)).
a(n) = A000217(A042948(n)).
a(n) = n*(2*n + (-1)^n).
a(n) = n*A168277(n + 1).
a(n) = n*A016813(A004526(n)).
From Colin Barker, Sep 23 2016: (Start)
G.f.: x*(1 + 9*x + 3*x^2 + 3*x^3) / ((1 - x)^3*(1 + x)^2).
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n>4.
a(n) = n*(2*n+1) for n even.
a(n) = n*(2*n-1) for n odd. (End)
E.g.f.: x*( 2*(1+x)*exp(x) - exp(-x) ). - G. C. Greubel, Aug 19 2022
Sum_{n>=1} 1/a(n) = 2 - log(2). - Amiram Eldar, Aug 21 2022