A276914 Subsequence of triangular numbers obtained by adding a square and two smaller triangles, a(n) = n^2 + 2*A000217(A052928(n)).
0, 1, 10, 15, 36, 45, 78, 91, 136, 153, 210, 231, 300, 325, 406, 435, 528, 561, 666, 703, 820, 861, 990, 1035, 1176, 1225, 1378, 1431, 1596, 1653, 1830, 1891, 2080, 2145, 2346, 2415, 2628, 2701, 2926, 3003, 3240, 3321, 3570, 3655, 3916, 4005, 4278, 4371, 4656
Offset: 0
Links
- Daniel Poveda Parrilla, Table of n, a(n) for n = 0..10000
- Daniel Poveda Parrilla, Illustration of initial terms.
- Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
Programs
-
Magma
[n*(2*n+(-1)^n): n in [0..40]]; // G. C. Greubel, Aug 19 2022
-
Mathematica
Table[n (2 n + (-1)^n), {n, 0, 48}] (* Michael De Vlieger, Sep 23 2016 *)
-
PARI
concat(0, Vec(x*(1+9*x+3*x^2+3*x^3)/((1-x)^3*(1+x)^2) + O(x^50))) \\ Colin Barker, Sep 23 2016
-
SageMath
[n*(2*n+(-1)^n) for n in (0..40)] # G. C. Greubel, Aug 19 2022
Formula
a(n) = n*(2*n + (-1)^n).
a(n) = n*A168277(n + 1).
From Colin Barker, Sep 23 2016: (Start)
G.f.: x*(1 + 9*x + 3*x^2 + 3*x^3) / ((1 - x)^3*(1 + x)^2).
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n>4.
a(n) = n*(2*n+1) for n even.
a(n) = n*(2*n-1) for n odd. (End)
E.g.f.: x*( 2*(1+x)*exp(x) - exp(-x) ). - G. C. Greubel, Aug 19 2022
Sum_{n>=1} 1/a(n) = 2 - log(2). - Amiram Eldar, Aug 21 2022
Comments