cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A276915 Indices of triangular numbers in A276914 which are also pentagonal.

Original entry on oeis.org

0, 1, 10, 143, 1988, 27693, 385710, 5372251, 74825800, 1042188953, 14515819538, 202179284583, 2815994164620, 39221739020101, 546288352116790, 7608815190614963, 105977124316492688, 1476070925240282673, 20559015829047464730, 286350150681424223551
Offset: 0

Views

Author

Daniel Poveda Parrilla, Sep 22 2016

Keywords

Comments

A276914(a(n)) = A014979(n + 1). All numbers which are both triangular and pentagonal can be found in sequence A276914.

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[n] == 14 a[n - 1] - a[n - 2] - 4 (-1)^n, a[0] == 0, a[1] == 1}, a, {n, 19}] (* Michael De Vlieger, Sep 23 2016 *)
  • PARI
    concat(0, Vec(x*(1-3*x)/((1+x)*(1-14*x+x^2)) + O(x^30))) \\ Colin Barker, Sep 23 2016

Formula

a(n) = 14*a(n-1) - a(n-2) - 4*(-1)^n for n>1, a(0)=0, a(1)=1.
a(n) = (A046175(n) + (A046175(n) mod 2))/2.
From Colin Barker, Sep 23 2016: (Start)
G.f.: x*(1 - 3*x) / ((1 + x)*(1 - 14*x + x^2)).
a(n) = 13*a(n-1) + 13*a(n-2) - a(n-3) for n>2.
a(n) = ( -6*(-1)^n + (3+sqrt(3))*(7-4*sqrt(3))^n - (-3+sqrt(3))*(7+4*sqrt(3))^n )/24. (End)

A276916 Subsequence of centered square numbers obtained by adding four triangles from A276914 and a central element, a(n) = 4*A276914(n) + 1.

Original entry on oeis.org

1, 5, 41, 61, 145, 181, 313, 365, 545, 613, 841, 925, 1201, 1301, 1625, 1741, 2113, 2245, 2665, 2813, 3281, 3445, 3961, 4141, 4705, 4901, 5513, 5725, 6385, 6613, 7321, 7565, 8321, 8581, 9385, 9661, 10513, 10805, 11705, 12013, 12961, 13285, 14281, 14621, 15665
Offset: 0

Views

Author

Daniel Poveda Parrilla, Sep 27 2016

Keywords

Comments

All terms of this sequence are centered square numbers. Graphically, each term of the sequence is made of four squares, eight triangles and a central element.
a(A220185(n+1)) = A008844(2n) = A079291(4n+1), which is a square of a Pell number.

Crossrefs

Programs

  • Magma
    [4*n*(2*n+(-1)^n)+1 : n in [0..60]]; // Wesley Ivan Hurt, Sep 27 2016
    
  • Maple
    A276916:=n->4*n*(2*n+(-1)^n)+1: seq(A276916(n), n=0..60); # Wesley Ivan Hurt, Sep 27 2016
  • Mathematica
    Table[4 n (2 n + (-1)^n) + 1, {n, 0, 44}] (* or *)
    CoefficientList[Series[(1 +4x +34x^2 +12x^3 +13x^4)/((1-x)^3*(1+x)^2), {x, 0, 44}], x] (* Michael De Vlieger, Sep 28 2016 *)
  • PARI
    Vec((1+4*x+34*x^2+12*x^3+13*x^4)/((1-x)^3*(1+x)^2) + O(x^50)) \\ Colin Barker, Sep 27 2016
    
  • SageMath
    [4*n*(2*n+(-1)^n) +1 for n in (0..60)] # G. C. Greubel, Aug 19 2022

Formula

a(n) = 4*n*(2*n + (-1)^n) + 1.
a(n) = 4*n*(2*n + 1) + 1 for n even.
a(n) = 4*n*(2*n - 1) + 1 for n odd.
a(n) is sum of two squares; a(n) = k^2 + (k+1)^2 where k = 2n-(n mod 2). - David A. Corneth, Sep 27 2016
From Colin Barker, Sep 27 2016: (Start)
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n > 4.
G.f.: (1+4*x+34*x^2+12*x^3+13*x^4) / ((1-x)^3*(1+x)^2). (End)
E.g.f.: (1+8*x+8*x^2)*exp(x) - 4*x*exp(-x). - G. C. Greubel, Aug 19 2022
Showing 1-2 of 2 results.