cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276937 Numbers m with at least one prime factor prime(k) such that prime(k)^k is a divisor of m, but with no factor prime(j) such that prime(j)^(j+1) divides m.

Original entry on oeis.org

2, 6, 9, 10, 14, 18, 22, 26, 30, 34, 38, 42, 45, 46, 50, 58, 62, 63, 66, 70, 74, 78, 82, 86, 90, 94, 98, 99, 102, 106, 110, 114, 117, 118, 122, 125, 126, 130, 134, 138, 142, 146, 150, 153, 154, 158, 166, 170, 171, 174, 178, 182, 186, 190, 194, 198, 202, 206, 207, 210, 214, 218, 222, 225, 226, 230, 234, 238, 242, 246, 250
Offset: 1

Views

Author

Antti Karttunen, Sep 24 2016

Keywords

Comments

Numbers m for which A276077(m) = 0 and A276935(m) > 0.
The asymptotic density of this sequence is Product_{k>=1} (1 - 1/prime(k)^k) - Product_{k>=1} (1 - 1/prime(k)^(k-1)) = 0.2803209124521781114031... . - Amiram Eldar, Sep 30 2023

Examples

			14 = 2*7 = prime(1)^1 * prime(4)^1 is a member as the first prime factor (2) satisfies the first condition, and neither prime factor violates the second condition.
36 = 4*9 = prime(1)^2 * prime(2)^2 is NOT a member because prime(1)^2 does not satisfy the second condition.
45 = 5*9 = prime(3)^1 * prime(2)^2 is a member as the latter prime factor satisfies the first condition, and neither prime factor violates the second condition.
		

Crossrefs

Intersection of A276078 and A276936.
Topmost row of A276941 (leftmost column in A276942).

Programs

  • Mathematica
    p[n_]:=FactorInteger[n][[All,1]];f[n_]:=PrimePi/@p[n];
    yQ[n_]:=Select[n/(Prime[f[n]]^f[n]),IntegerQ]!={};
    nQ[n_]:=Select[n/(Prime[f[n]]^(f[n]+1)),IntegerQ]=={};
    Select[Range[2,250],yQ[#]&&nQ[#]&] (* Ivan N. Ianakiev, Sep 28 2016 *)
  • PARI
    is(n) = {my(f = factor(n), c = 0, k); for (i=1, #f~, k = primepi(f[i, 1]); if(f[i, 2] > k, return(0), if( f[i, 2] == k, c++))); c > 0;} \\ Amiram Eldar, Sep 30 2023