A276968 Odd integers n such that 2^n == 2^5 (mod n).
1, 3, 5, 25, 65, 85, 145, 165, 185, 205, 221, 265, 305, 365, 445, 465, 485, 505, 545, 565, 685, 745, 785, 825, 865, 905, 965, 985, 1025, 1085, 1145, 1165, 1205, 1285, 1345, 1385, 1405, 1465, 1565, 1585, 1685, 1705, 1745, 1765, 1865, 1925, 1945, 1985, 2005, 2045, 2105, 2165, 2245, 2285, 2305, 2325
Offset: 1
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
m = 2^5; Join[Select[Range[1, m, 2], Divisible[2^# - m, #] &], Select[Range[m + 1, 10^3, 2], PowerMod[2, #, #] == m &]] (* Robert Price, Oct 12 2018 *)
Comments