cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276968 Odd integers n such that 2^n == 2^5 (mod n).

Original entry on oeis.org

1, 3, 5, 25, 65, 85, 145, 165, 185, 205, 221, 265, 305, 365, 445, 465, 485, 505, 545, 565, 685, 745, 785, 825, 865, 905, 965, 985, 1025, 1085, 1145, 1165, 1205, 1285, 1345, 1385, 1405, 1465, 1565, 1585, 1685, 1705, 1745, 1765, 1865, 1925, 1945, 1985, 2005, 2045, 2105, 2165, 2245, 2285, 2305, 2325
Offset: 1

Views

Author

Max Alekseyev, Sep 22 2016

Keywords

Comments

Also, integers n such that 2^(n-5) == 1 (mod n).
Contains A050993 as a subsequence.
For all m, 2^A128122(m)-1 belongs to this sequence.

Crossrefs

The odd terms of A015925.
Odd integers n such that 2^n == 2^k (mod n): A176997 (k=1), A173572 (k=2), A276967 (k=3), A033984 (k=4), this sequence (k=5), A215610 (k=6), A276969 (k=7), A215611 (k=8), A276970 (k=9), A215612 (k=10), A276971 (k=11), A215613 (k=12).

Programs

  • Mathematica
    m = 2^5; Join[Select[Range[1, m, 2], Divisible[2^# - m, #] &],
    Select[Range[m + 1, 10^3, 2], PowerMod[2, #, #] == m &]] (* Robert Price, Oct 12 2018 *)