A276971 Odd integers n such that 2^n == 2^11 (mod n).
1, 3, 11, 15, 31, 35, 51, 121, 341, 451, 455, 671, 781, 1111, 1235, 1271, 1441, 1547, 1661, 1991, 2091, 2101, 2321, 2651, 2761, 2981, 3091, 3421, 3641, 3731, 3751, 4403, 4411, 4631, 4741, 5071, 5401, 5731, 5951, 6171, 6191, 6281, 6611, 6851, 6941, 7051, 7271, 7601, 7711, 8261, 8371, 8435, 8921
Offset: 1
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
m = 2^11; Join[Select[Range[1, m, 2], Divisible[2^# - m, #] &], Select[Range[m + 1, 10^6, 2], PowerMod[2, #, #] == m &]] (* Robert Price, Oct 12 2018 *)
Comments