A176997 Integers k such that 2^(k-1) == 1 (mod k).
1, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331
Offset: 1
Keywords
Examples
5 is in the sequence because 2^(5-1) == 4^(5-1) == 8^(5-1) == 1 (mod 5).
References
- Daniel Shanks, Solved and Unsolved Problems in Number Theory, Spartan Books, Washington D.C., 1962.
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
m = 1; Join[Select[Range[m], Divisible[2^(# - 1) - m, #] &], Select[Range[m + 1, 10^3], PowerMod[2, # - 1, #] == m &]] (* Robert Price, Oct 12 2018 *)
-
PARI
isok(n) = Mod(2, n)^(n-1) == 1; \\ Michel Marcus, Sep 23 2016
-
Python
from itertools import count, islice def A176997_gen(startvalue=1): # generator of terms >= startvalue if startvalue <= 1: yield 1 k = 1<<(s:=max(startvalue,1))-1 for n in count(s): if k % n == 1: yield n k <<= 1 A176997_list = list(islice(A176997_gen(),30)) # Chai Wah Wu, Jun 30 2022
Extensions
Edited by Max Alekseyev, Sep 22 2016
Comments