A276980 Odd squarefree numbers n > 1 such that lambda(n)^2 = phi(n), where lambda is the Carmichael lambda function and phi is Euler's totient function.
273, 1729, 2109, 2255, 4433, 4641, 4697, 5673, 6643, 6935, 7667, 8103, 8729, 10235, 11543, 14497, 16385, 16523, 17507, 18915, 20033, 22649, 23579, 26691, 29309, 29393, 34799, 35853, 35929, 37209, 37829, 39277, 42653, 45551, 55699, 56163, 68735, 68901, 69167, 69977, 70993, 73505, 75361, 76373
Offset: 1
Keywords
Examples
273 = 3 * 7 * 13, so phi(273) = 2 * 6 * 12 = 144 = 12^2 and lambda(273) = lcm(2, 6, 12) = 12, hence 273 is in the sequence. Notice that phi(315) = 144 and lambda(315) = 12 also. However, mu(315) = 0 since 315 = 3^2 * 5 * 7, so for that reason 315 is not in the sequence.
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..1024
Programs
-
Mathematica
samePsiSqPhiQ[n_] := SquareFreeQ[n] && CarmichaelLambda[n]^2 == EulerPhi[n]; Select[1 + 2 Range@50000, samePsiSqPhiQ] (* Robert G. Wilson v, Apr 14 2017 *)
-
PARI
is(n) = n>1 && n%2!=0 && issquarefree(n) && lcm(znstar(n)[2])^2==eulerphi(n) \\ Felix Fröhlich, Apr 22 2017
Comments