cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277021 Left inverse of A277022.

Original entry on oeis.org

0, 1, 2, 2, 6, 3, 4, 3, 30, 7, 8, 4, 12, 5, 6, 4, 210, 31, 32, 8, 36, 9, 10, 5, 60, 13, 14, 6, 18, 7, 8, 5, 2310, 211, 212, 32, 216, 33, 34, 9, 240, 37, 38, 10, 42, 11, 12, 6, 420, 61, 62, 14, 66, 15, 16, 7, 90, 19, 20, 8, 24, 9, 10, 6, 30030, 2311, 2312, 212, 2316, 213, 214, 33, 2340, 217, 218, 34, 222, 35, 36, 10, 2520, 241, 242
Offset: 0

Views

Author

Antti Karttunen, Sep 26 2016

Keywords

Crossrefs

Left inverse of A277022.
Cf. also A277017.

Programs

  • Python
    from sympy import primorial, primepi, prime, factorint, floor, log
    def a002110(n): return 1 if n<1 else primorial(n)
    def a276085(n):
        f=factorint(n)
        return sum([f[i]*a002110(primepi(i) - 1) for i in f])
    def A(n): return n - 2**int(floor(log(n, 2)))
    def b(n): return n + 1 if n<2 else prime(1 + (len(bin(n)[2:]) - bin(n)[2:].count("1"))) * b(A(n))
    def a(n): return a276085(b(n - 1))
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Jun 22 2017
  • Scheme
    (define (A277021 n) (let loop ((s 0) (n n) (r 0) (i 1) (pr 1)) (cond ((zero? n) (+ s (* r pr))) ((even? n) (loop (+ s (* r pr)) (/ n 2) 0 (+ 1 i) (* (A000040 i) pr))) (else (loop s (/ (- n 1) 2) (+ 1 r) i pr)))))
    

Formula

a(n) = A276085(A005940(1+n)).
Other identities. For all n >= 0:
a(A277022(n)) = n.