A277030 Smallest m such that b^phi(n) == b^m (mod n) for every integer b, where phi(n) = A000010(n).
0, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, 2, 12, 6, 4, 4, 16, 6, 18, 4, 6, 10, 22, 4, 20, 12, 18, 6, 28, 4, 30, 8, 10, 16, 12, 6, 36, 18, 12, 4, 40, 6, 42, 10, 12, 22, 46, 4, 42, 20, 16, 12, 52, 18, 20, 6, 18, 28, 58, 4, 60, 30, 6, 16, 12, 10, 66, 16, 22, 12, 70, 6, 72, 36, 20, 18, 30
Offset: 1
Keywords
Links
- Antti Karttunen (terms 1..4000) & Altug Alkan, Table of n, a(n) for n = 1..10000
Programs
-
PARI
A277030(n) = { my(b,m=0); if(1==n,0,while(1, m=m+1; b=1; while(((b^eulerphi(n))%n) == ((b^m)%n), b=b+1; if(b>n, return(m))))); }; \\ (Following the description). - Antti Karttunen, Jul 28 2017
-
Python
from sympy import totient def a(n): m=0 if n==1: return 0 else: while True: m+=1 b=1 while (b**totient(n))%n==(b**m)%n: b+=1 if b>n: return m print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Jul 29 2017, after PARI code
Formula
Conjectured: a(n) = A002322(n), except for a(1) = 0 and a(8) = a(24) = 4.
Comments