cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277089 Pisot sequences L(6,15), S(6,15).

Original entry on oeis.org

6, 15, 38, 97, 248, 635, 1626, 4164, 10664, 27311, 69945, 179134, 458775, 1174956, 3009148, 7706648, 19737289, 50548641, 129458768, 331553377, 849132458, 2174690356, 5569541124, 14264002343, 36531153701, 93558957622, 239611336203, 613662164440, 1571633704952
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 29 2016

Keywords

Crossrefs

Cf. See A008776 for definitions of Pisot sequences.

Programs

  • Mathematica
    RecurrenceTable[{a[0] == 6, a[1] == 15, a[n] == Ceiling[a[n - 1]^2/a[n - 2]]}, a, {n, 28}]
    RecurrenceTable[{a[0] == 6, a[1] == 15, a[n] == Floor[a[n - 1]^2/a[n - 2] + 1]}, a, {n, 28}]

Formula

a(n) = ceiling(a(n-1)^2/a(n-2)), a(0) = 6, a(1) = 15.
a(n) = floor(a(n-1)^2/a(n-2)+1), a(0) = 6, a(1) = 15.
Conjectures: (Start)
G.f.: (6 - 3*x - x^2 - 2*x^3 + x^4 + 3*x^5 - 5*x^6)/((1 - x)*(1 - 2 x - x^2 - x^3 - 2*x^6)).
a(n) = 3*a(n-1) - a(n-2) - a(n-4) + 2*a(n-6) - 2*a(n-7). (End)