A277089 Pisot sequences L(6,15), S(6,15).
6, 15, 38, 97, 248, 635, 1626, 4164, 10664, 27311, 69945, 179134, 458775, 1174956, 3009148, 7706648, 19737289, 50548641, 129458768, 331553377, 849132458, 2174690356, 5569541124, 14264002343, 36531153701, 93558957622, 239611336203, 613662164440, 1571633704952
Offset: 0
Links
- Ilya Gutkovskiy, Pisot sequences L(x,y)
- Index entries for Pisot sequences
Crossrefs
Programs
-
Mathematica
RecurrenceTable[{a[0] == 6, a[1] == 15, a[n] == Ceiling[a[n - 1]^2/a[n - 2]]}, a, {n, 28}] RecurrenceTable[{a[0] == 6, a[1] == 15, a[n] == Floor[a[n - 1]^2/a[n - 2] + 1]}, a, {n, 28}]
Formula
a(n) = ceiling(a(n-1)^2/a(n-2)), a(0) = 6, a(1) = 15.
a(n) = floor(a(n-1)^2/a(n-2)+1), a(0) = 6, a(1) = 15.
Conjectures: (Start)
G.f.: (6 - 3*x - x^2 - 2*x^3 + x^4 + 3*x^5 - 5*x^6)/((1 - x)*(1 - 2 x - x^2 - x^3 - 2*x^6)).
a(n) = 3*a(n-1) - a(n-2) - a(n-4) + 2*a(n-6) - 2*a(n-7). (End)