A277090 Expansion of Product_{k>=0} 1/(1 - x^(8*k+1)).
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 4, 4, 4, 4, 4, 4, 5, 6, 7, 7, 7, 7, 7, 7, 8, 10, 11, 12, 12, 12, 12, 12, 13, 15, 17, 18, 19, 19, 19, 19, 20, 23, 26, 28, 29, 30, 30, 30, 31, 34, 38, 41, 43, 44, 45, 45, 46, 50, 55, 60, 63, 65, 66, 67, 68, 72, 79, 85, 90, 93, 95, 96, 98, 103, 111, 120, 127, 132, 135, 137, 139, 145
Offset: 0
Keywords
Examples
a(10) = 2, because we have [9, 1] and [1, 1, 1, 1, 1, 1, 1, 1, 1, 1].
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
- Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015.
- Index entries for related partition-counting sequences
Crossrefs
Programs
-
Mathematica
CoefficientList[Series[QPochhammer[x, x^8]^(-1), {x, 0, 90}], x]
Formula
G.f.: Product_{k>=0} 1/(1 - x^(8*k+1)).
a(n) ~ exp((Pi*sqrt(n))/(2*sqrt(3)))*Gamma(1/8)/(4*3^(1/16)*(2*Pi)^(7/8)*n^(9/16)).
a(n) = (1/n)*Sum_{k=1..n} A284100(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 20 2017
Comments