cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277101 Sum over all partitions of n of the number of distinct parts i of multiplicity i - 1.

Original entry on oeis.org

0, 0, 1, 1, 1, 2, 4, 5, 8, 10, 15, 20, 29, 37, 52, 67, 89, 115, 152, 192, 251, 316, 405, 508, 644, 799, 1006, 1243, 1546, 1901, 2351, 2871, 3527, 4289, 5232, 6336, 7688, 9264, 11189, 13430, 16137, 19299, 23097, 27514, 32799, 38944, 46246, 54738, 64782, 76430, 90171
Offset: 0

Views

Author

Emeric Deutsch, Oct 10 2016

Keywords

Examples

			a(6) = 4 because in the partitions [1,1,1,1,1,1], [1,1,1,1,2'], [1,1,2,2], [2,2,2], [1,1,1,3], [1,2',3], [3',3], [1,1,4], [2',4], [1,5], [6] of 6 only the marked parts satisfy the requirement.
		

Crossrefs

Programs

  • Maple
    g := (sum(x^(i*(i+1))*(1-x^(i+1)), i = 1 .. 200))/(product(1-x^i, i = 1 .. 200)): gser := series(g, x = 0, 53): seq(coeff(gser, x, n), n = 0 .. 50);
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0, [1, 0],
         `if`(i<1, 0, add((p-> p+`if`(i-1<>j, 0,
          [0, p[1]]))(b(n-i*j, i-1)), j=0..n/i)))
        end:
    a:= n-> b(n$2)[2]:
    seq(a(n), n=0..60);  # Alois P. Heinz, Oct 10 2016
  • Mathematica
    max = 60; s = Sum[x^(i*(i+1))*(1-x^(1+i)), {i, 1, max}]/QPochhammer[x] + O[x]^max; CoefficientList[s, x] (* Jean-François Alcover, Dec 08 2016 *)

Formula

a(n) = Sum(k*A277100(n,k), k>=0).
G.f.: g(x) = Sum_(i>=1)(x^(i(i+1))(1-x^(i+1)))/Product_(i>=1)(1-x^i).