A276428
Sum over all partitions of n of the number of distinct parts i of multiplicity i.
Original entry on oeis.org
0, 1, 0, 1, 2, 3, 3, 6, 7, 12, 15, 22, 27, 40, 49, 68, 87, 116, 145, 193, 239, 311, 387, 494, 611, 776, 952, 1193, 1464, 1817, 2214, 2733, 3315, 4060, 4911, 5974, 7195, 8713, 10448, 12585, 15048, 18039, 21486, 25660, 30462, 36231, 42888, 50820, 59972, 70843, 83354
Offset: 0
a(5) = 3 because in the partitions [1,1,1,1,1], [1,1,1,2], [1',2',2], [1,1,3], [2,3], [1',4], [5] of 5 only the marked parts satisfy the requirement.
-
g := (sum(x^(i^2)*(1-x^i), i = 1 .. 200))/(product(1-x^i, i = 1 .. 200)): gser := series(g, x = 0, 53): seq(coeff(gser, x, n), n = 0 .. 50);
# second Maple program:
b:= proc(n, i) option remember; `if`(n=0, [1, 0],
`if`(i<1, 0, add((p-> p+`if`(i<>j, 0,
[0, p[1]]))(b(n-i*j, i-1)), j=0..n/i)))
end:
a:= n-> b(n$2)[2]:
seq(a(n), n=0..60); # Alois P. Heinz, Sep 19 2016
-
b[n_, i_] := b[n, i] = Expand[If[n==0, 1, If[i<1, 0, Sum[If[i==j, x, 1]*b[n - i*j, i-1], {j, 0, n/i}]]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, n]]; a[n_] := (row = T[n]; row.Range[0, Length[row]-1]); Table[a[n], {n, 0, 60}] // Flatten (* Jean-François Alcover, Nov 28 2016, after Alois P. Heinz's Maple code for A276427 *)
-
apply( A276428(n,s,c)={forpart(p=n,c=1;for(i=1,#p,p[i]==if(i<#p, p[i+1])&&c++&&next; c==p[i]&&s++; c=1));s}, [0..20]) \\ M. F. Hasler, Oct 27 2019
A276434
Sum over all partitions of n of the number of distinct parts i of multiplicity i+1.
Original entry on oeis.org
0, 0, 1, 0, 1, 1, 3, 3, 5, 6, 10, 12, 19, 23, 34, 41, 58, 72, 98, 121, 162, 200, 262, 323, 415, 511, 650, 796, 1000, 1222, 1522, 1851, 2287, 2771, 3399, 4103, 5000, 6015, 7289, 8735, 10530, 12579, 15094, 17968, 21468, 25477, 30319, 35873, 42531, 50177, 59291
Offset: 0
a(6) = 3 because in the partitions [1,1,1,1,1,1], [1,1,1,1,2], [1',1,2,2], [2',2,2], [1,1,1,3], [1,2,3], [3,3], [1',1,4], [2,4], [1,5], [6] of 6 only the marked parts satisfy the requirement.
-
g := (sum(x^(i*(i+1))*(1-x^i), i = 1 .. 200))/(product(1-x^i, i = 1 .. 200)): gser := series(g, x = 0, 53): seq(coeff(gser, x, n), n = 0 .. 50);
# second Maple program:
b:= proc(n, i) option remember; `if`(n=0, [1, 0],
`if`(i<1, 0, add((p-> p+`if`(i+1<>j, 0,
[0, p[1]]))(b(n-i*j, i-1)), j=0..n/i)))
end:
a:= n-> b(n$2)[2]:
seq(a(n), n=0..60); # Alois P. Heinz, Sep 30 2016
-
max = 60; s = Sum[x^(i*(i+1))*(1-x^i), {i, 1, max}]/QPochhammer[x] + O[x]^max; CoefficientList[s, x] (* Jean-François Alcover, Dec 08 2016 *)
A276433
Irregular triangle read by rows: T(n,k) is the number of partitions of n having k distinct parts i of multiplicity i+1 (n>=0).
Original entry on oeis.org
1, 1, 1, 1, 3, 4, 1, 6, 1, 8, 3, 12, 3, 18, 3, 1, 24, 6, 32, 10, 45, 10, 1, 59, 17, 1, 79, 21, 1, 104, 28, 3, 137, 37, 2, 177, 50, 4, 229, 64, 4, 295, 82, 8, 377, 105, 8, 477, 139, 10, 1, 605, 174, 13, 761, 220, 21, 956, 275, 24, 1193, 350, 31, 1
Offset: 0
The partition [1,1,3,3,3,3,4] has 2 parts i of multiplicity i+1: 1 and 3.
T(5,1) = 1, counting [1,1,3].
T(6,1) = 3, counting [1,1,4], [1,1,2,2], and [2,2,2].
T(8,2) = 1, counting [1,1,2,2,2].
Triangle starts:
1;
1;
1,1;
3;
4,1;
6,1;
8,3.
-
G := mul((t-1)*x^(i*(i+1))+1/(1-x^i), i = 1 .. 100): Gser := simplify(series(G, x = 0, 35)): for n from 0 to 30 do P[n] := sort(coeff(Gser, x, n)) end do: for n from 0 to 30 do seq(coeff(P[n],t,k),k = 0 .. degree(P[n])) end do; # yields sequence in triangular form
# second Maple program:
b:= proc(n, i) option remember; expand(
`if`(n=0, 1, `if`(i<1, 0, add(
`if`(i+1=j, x, 1)*b(n-i*j, i-1), j=0..n/i))))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2)):
seq(T(n), n=0..30); # Alois P. Heinz, Sep 30 2016
-
b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i < 1, 0, Sum[If[i + 1 == j, x, 1]*b[n - i*j, i - 1], {j, 0, n/i}]]]]; T[n_] := Function[p, Table[ Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, n]]; Table[T[n], {n, 0, 30}] // Flatten (* Jean-François Alcover, Nov 28 2016 after Alois P. Heinz *)
A277099
Number of partitions of n containing no part i of multiplicity i+1.
Original entry on oeis.org
1, 1, 1, 3, 4, 6, 8, 12, 18, 24, 32, 45, 59, 79, 104, 137, 177, 229, 295, 377, 477, 605, 761, 956, 1193, 1484, 1840, 2276, 2800, 3441, 4210, 5141, 6261, 7603, 9206, 11132, 13419, 16144, 19380, 23223, 27763, 33134, 39467, 46931, 55703, 66008, 78085, 92239, 108776, 128091, 150617
Offset: 0
a(4) = 4 because we have [1,1,1,1], [1,3], [2,2], and [4]; the partition [1,1,2] does not qualify.
-
g:= product(1/(1-x^i)-x^(i*(i+1)), i = 1 .. 100): gser := series(g, x = 0, 53): seq(coeff(gser, x, n), n = 0 .. 50);
# second Maple program:
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(`if`(i+1=j, 0, b(n-i*j, i-1)), j=0..n/i)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..60); # Alois P. Heinz, Sep 30 2016
-
nmax = 50; CoefficientList[Series[Product[(1/(1-x^k) - x^(k*(k+1))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 30 2016 *)
A277100
Irregular triangle read by rows: T(n,k) is the number of partitions of n having k distinct parts i (i>=2) of multiplicity i-1 (n>=0).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 4, 1, 5, 2, 7, 4, 10, 5, 15, 6, 1, 21, 8, 1, 28, 13, 1, 37, 18, 1, 50, 25, 2, 67, 31, 3, 88, 42, 5, 115, 55, 6, 150, 73, 8, 193, 93, 11, 248, 122, 15, 317, 154, 19, 402, 200, 24, 1, 508, 253, 30, 1, 640, 320, 41, 1, 802, 399, 53, 1, 1002, 503, 69, 1
Offset: 0
The partition [1,1,2,3,3,3,3,4,4,4] has 2 parts i of multiplicity i-1: 2 and 4.
T(5,1) = 2, counting [1,1,1,2] and [2,3].
T(8,2) = 1, counting [2,3,3].
Triangle starts:
1;
1;
1, 1;
2, 1;
4, 1;
5, 2;
7, 4;
...
-
g := mul((t-1)*x^(i*(i+1))+1/(1-x^(i+1)), i = 1 .. 100)/(1-x): gser := simplify(series(g, x = 0, 35)): for n from 0 to 30 do P[n] := sort(coeff(gser, x, n)) end do: for n from 0 to 30 do seq(coeff(P[n], t, k), k = 0 .. degree(P[n])) end do; # yields sequence in triangular form
# second Maple program:
b:= proc(n, i) option remember; expand(
`if`(n=0, 1, `if`(i<1, 0, add(
`if`(i-1=j, x, 1)*b(n-i*j, i-1), j=0..n/i))))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2)):
seq(T(n), n=0..30); # Alois P. Heinz, Oct 10 2016
-
b[n_, i_] := b[n, i] = Expand[If[n==0, 1, If[i<1, 0, Sum[If[i-1 == j, x, 1]*b[n-i*j, i-1], {j, 0, n/i}]]]]; T[n_] := Function[p, Table[ Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, n]]; Table[T[n], {n, 0, 30}] // Flatten (* Jean-François Alcover, Dec 08 2016 after Alois P. Heinz *)
A277102
Number of partitions of n containing no part i of multiplicity i-1.
Original entry on oeis.org
1, 1, 1, 2, 4, 5, 7, 10, 15, 21, 28, 37, 50, 67, 88, 115, 150, 193, 248, 317, 402, 508, 640, 802, 1002, 1248, 1545, 1908, 2351, 2887, 3532, 4313, 5251, 6377, 7724, 9334, 11254, 13541, 16253, 19473, 23286, 27791, 33100, 39362, 46723, 55370, 65504, 77377, 91257, 107477, 126380
Offset: 0
a(4) = 4 because we have [1,1,1,1], [1,3], [2,2], and [4]; the partition [1,1,2] does not qualify.
-
g := (product(1/(1-x^(i+1))-x^(i*(i+1)), i = 1 .. 100))/(1-x): gser := series(g, x = 0, 53): seq(coeff(gser, x, n), n = 0 .. 50);
# second Maple program:
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(`if`(i-1=j, 0, b(n-i*j, i-1)), j=0..n/i)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..60); # Alois P. Heinz, Oct 10 2016
-
b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, Sum[If[i-1 == j, 0, b[n-i*j, i-1]], {j, 0, n/i}]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Dec 11 2016 after Alois P. Heinz *)
A328891
Irregular table T(n,k) = #{m > 0: m occurs m times in the k-th partition of n, using A&S order (A036036)}, 1 <= k <= A000041(n), n >= 0.
Original entry on oeis.org
0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 2, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1
Offset: 0
The table reads:
n \ T(n,k), ...
0 : 0; (The only partition of 0 is [], having no number at all in it.)
1 : 1; (The only partition of 1 is [1], in which the number m=1 occurs 1 time.)
2 : 0,0; (Neither [2] nor [1,1] have some m occurring m times.)
3 : 0,1,0; ([3] and [1,1,1] have no m, but [1,2] has m=1 occurring m times.)
4 : 0,1,1,0,0; (Here [1,3] and [2,2] have m=1 resp. m=2 occurring m times.)
5 : 0,1,0,0,2,0,0; ([1,4] has m=1, [1,2,2] has m=1 and m=2 occurring m times.)
6 : 0,1,0,0,0,1,0,0,1,0,0;
7 : 0,1,0,0,0,1,1,1,0,0,1,0,1,0,0;
(...)
Column 1 = (0,1,0,...) = A063524, characteristic function of {1}: The corresponding partition is [n], except for [] when n=0.
Column 2 = (0,1,1,1,...) = signum(n-2) = A057427(n-2), n >= 2: The corresponding partition is [1, n-1].
Column 3 = A063524(n-3) = A185014(n), characteristic function of {4}: The corresponding partition is [2, n-2] for n >= 4, and [1,1,1] for n = 3.
Column 4 = (0,...) = A000004(n-4), the zero function: The corresponding partition is [3, n-3] for n >= 6, and [1,1,2] for n = 4 and [1,1,3] for n = 5.
Row sums = A276428(n) = sum over all partitions of n of the number of distinct parts m of multiplicity m.
Cf.
A036036 (list of partitions in Abramowitz & Stegun or graded reflected colexicographic order).
Cf.
A000041 (partition numbers = row lengths).
-
apply( A328891_row(n, r=[])={forpart(p=n, my(s, c=1); for(i=1, #p, p[i]==if(i<#p, p[i+1]) && c++ && next; c==p[i] && s++; c=1); r=concat(r,s));r}, [0..12])
Showing 1-7 of 7 results.
Comments