A277109 Starting from 2^n+1, the length of the longest sequence of consecutive numbers which all take the same number of steps to reach 1 in the Collatz (or '3x+1') problem.
1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 3, 1, 1, 1, 3, 1, 3, 7, 15, 30, 1, 1, 3, 7, 15, 26, 26, 1, 1, 1, 3, 1, 3, 1, 3, 1, 1, 1, 3, 1, 3, 7, 15, 1, 1, 1, 3, 1, 3, 1, 3, 1, 1, 1, 3, 1, 3, 7, 15, 1, 1, 3, 7, 15, 26, 1, 3, 7, 15, 31, 63, 26, 30, 26, 26, 26, 26, 30, 46, 26, 26, 26, 26, 1, 1, 1, 3, 7, 15, 1, 3, 1
Offset: 0
Keywords
Examples
a(6) = 3, because 2^6+1, 2^6+2 and 2^6+3 all take 27 steps to reach 1. From _Hartmut F. W. Hoft_, Aug 16 2018: (Start) Two examples for the conjecture (L(n) denotes the length of the Collatz run): n a(n) L(n) n a(n) L(n) 64 26 483 20 1 72 ------------------ ------------------ 65 1 559 21 1 166 66 3 560 22 3 167 67 7 561 23 7 168 68 15 562 24 15 169 69 31 563 ------------------ 70 63 564 25 26 170 ------------------ 26 26 171 71 26 565 ------------------ 72 30 566 27 1 247 73 26 567 74 26 568 75 26 569 76 26 570 77 30 571 78 46 572 79 26 573 80 26 574 81 26 575 82 26 576 ------------------ 83 1 626 The "power of 2 minus 1" initial section of any such subsequence of a(n) is always increasing. However, there is no apparent ordering in the second section when that is present. (End)
Links
- Dmitry Kamenetsky, Table of n, a(n) for n = 0..1812
- Dmitry Kamenetsky, C program to compute the sequence
- Guo-Gang Gao, On consecutive numbers of the same height in the Collatz problem, Discrete Mathematics, Volume 112, pages 261-267, 1993.
- Pureferret, Longest known sequence of identical consecutive Collatz sequence lengths, Mathematics StackExchange, 2013.
- Carlos Rivera, Puzzle 847: Consecutive primes with the same Collatz length, The Prime Puzzles and Problems Connection.
- Carlos Rivera, Puzzle 851: Puzzle 847 revisited, The Prime Puzzles and Problems Connection.
Programs
-
Mathematica
f[n_] := Length[NestWhileList[If[EvenQ@ #, #/2, 3 # + 1] &, n, # != 1 &]] - 1; Table[k = 1; While[f[2^n + k] == f[2^n + k + 1], k++]; k, {n, 120}] (* Michael De Vlieger, Oct 03 2016 *)
-
PARI
nbsteps(n)= s=n; c=0; while(s>1, s=if(s%2, 3*s+1, s/2); c++); c; a(n) = {my(ns = 2^n+1); my(nbs = nbsteps(ns)); while(nbsteps(ns+1) == nbs, ns++); ns - 2^n;} \\ Michel Marcus, Oct 30 2016
Comments