A277175 Convolution of Catalan numbers and factorial numbers.
1, 2, 5, 15, 53, 222, 1120, 6849, 50111, 427510, 4142900, 44693782, 529276962, 6813205468, 94642629984, 1410507388421, 22445134308123, 379776665469030, 6808016435182620, 128886547350655050, 2569493300908367550, 53805226930896987540, 1180673761078007109840
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..449
Programs
-
Maple
a:= proc(n) option remember; `if`(n<4, [1, 2, 5, 15][n+1], ((2*(n^4-n^3-19*n^2+48*n-5))*a(n-1) -(n+1)*(n^4+9*n^3-90*n^2+226*n-160)*a(n-2) +(2*(4*n^5-18*n^4-23*n^3+266*n^2-523*n+330))*a(n-3) -(4*(n-2))*(n^2-4*n+5)*(2*n-5)^2*a(n-4))/ ((n+1)*(n^2-6*n+10))) end: seq(a(n), n=0..30);
-
Mathematica
Table[Sum[CatalanNumber[k]*(n - k)!, {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 13 2016 *)
Formula
a(n) = Sum_{i=0..n} C(i) * (n-i)!.
a(n) ~ n! * (1 + 1/n + 2/n^2 + 7/n^3 + 31/n^4 + 163/n^5 + 979/n^6 + 6556/n^7 + 48150/n^8 + 383219/n^9 + 3275121/n^10 + ...), for coefficients see A277396. - Vaclav Kotesovec, Oct 13 2016