cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277175 Convolution of Catalan numbers and factorial numbers.

Original entry on oeis.org

1, 2, 5, 15, 53, 222, 1120, 6849, 50111, 427510, 4142900, 44693782, 529276962, 6813205468, 94642629984, 1410507388421, 22445134308123, 379776665469030, 6808016435182620, 128886547350655050, 2569493300908367550, 53805226930896987540, 1180673761078007109840
Offset: 0

Views

Author

Alois P. Heinz, Oct 02 2016

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<4, [1, 2, 5, 15][n+1],
          ((2*(n^4-n^3-19*n^2+48*n-5))*a(n-1)
           -(n+1)*(n^4+9*n^3-90*n^2+226*n-160)*a(n-2)
           +(2*(4*n^5-18*n^4-23*n^3+266*n^2-523*n+330))*a(n-3)
           -(4*(n-2))*(n^2-4*n+5)*(2*n-5)^2*a(n-4))/
           ((n+1)*(n^2-6*n+10)))
        end:
    seq(a(n), n=0..30);
  • Mathematica
    Table[Sum[CatalanNumber[k]*(n - k)!, {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 13 2016 *)

Formula

a(n) = Sum_{i=0..n} C(i) * (n-i)!.
a(n) ~ n! * (1 + 1/n + 2/n^2 + 7/n^3 + 31/n^4 + 163/n^5 + 979/n^6 + 6556/n^7 + 48150/n^8 + 383219/n^9 + 3275121/n^10 + ...), for coefficients see A277396. - Vaclav Kotesovec, Oct 13 2016