cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A277396 Coefficients in asymptotic expansion of sequence A277175.

Original entry on oeis.org

1, 1, 2, 7, 31, 163, 979, 6556, 48150, 383219, 3275121, 29841176, 288196506, 2936030427, 31425237185, 352166075233, 4119800015129, 50180781755797, 634948818421481, 8329111076372852, 113065244341635514, 1585699911447149109, 22942071009006046159
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 13 2016

Keywords

Examples

			A277175(n) / n! ~ 1 + 1/n + 2/n^2 + 7/n^3 + 31/n^4 + 163/n^5 + 979/n^6 + ...
		

Crossrefs

Cf. A277175.

Programs

  • Mathematica
    Flatten[{1, Table[Sum[CatalanNumber[j]*StirlingS2[n-1, j-1], {j, 1, n}], {n, 1, 25}]}]

A277359 Number of self-avoiding planar walks starting at (0,0), ending at (n,n), remaining in the first quadrant and using steps (0,1) and (1,0) on or below the diagonal and using steps (1,1), (-1,1), and (1,-1) on or above the diagonal.

Original entry on oeis.org

1, 2, 7, 32, 176, 1126, 8227, 67768, 622706, 6323932, 70400734, 852952952, 11176241098, 157506733030, 2375966883371, 38200984291800, 652179787654530, 11783182484950980, 224623760504277810, 4505795627243046240, 94873821120923655336, 2092249161797280567516
Offset: 0

Views

Author

Alois P. Heinz, Oct 10 2016

Keywords

Comments

Both endpoints of each step have to satisfy the given restrictions.
a(n) is odd for n in {0, 2, 6, 14, 30, 62, ... } = { 2^n-2 | n>0 }.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<3, [1, 2, 7][n+1],
          ((n^3+10*n^2-10*n+1)*a(n-1)-(2*(4*n^3+2*n^2-29*n+28))
            *a(n-2)+(4*(n-2))*(2*n-3)^2*a(n-3))/(n*(n+1)))
        end:
    seq(a(n), n=0..25);
  • Mathematica
    a[n_] := a[n] = If[n<3, {1, 2, 7}[[n+1]], ((n^3+10*n^2-10*n+1)*a[n-1] - (2*(4*n^3+2*n^2-29*n+28))*a[n-2] + (4*(n-2))*(2*n-3)^2*a[n-3])/(n*(n+1)) ]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jan 25 2017, translated from Maple *)

Formula

a(n) ~ exp(1)*(exp(1)-2) * n! * n. - Vaclav Kotesovec, Oct 13 2016

A277176 Exponential convolution of Catalan numbers and factorial numbers.

Original entry on oeis.org

1, 2, 6, 23, 106, 572, 3564, 25377, 204446, 1844876, 18465556, 203179902, 2438366836, 31699511768, 443795839192, 6656947282725, 106511191881270, 1810690391626380, 32592427526913540, 619256124778620450, 12385122502136529420, 260087572569333384840
Offset: 0

Views

Author

Alois P. Heinz, Oct 02 2016

Keywords

Comments

a(n) = number of permutations of [n+1] in which the first entry does not start a (classical) 1234 pattern. The number of such permutations with first entry i is n!/(n + 1 - i)! C(n + 1 - i) where C(n) is the Catalan number A000108(n). - David Callan, Jun 12 2017

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, n+1,
         ((n^2+5*n-2)*a(n-1)-(4*n-2)*(n-1)*a(n-2))/(n+1))
        end:
    seq(a(n), n=0..30);
  • Mathematica
    a[n_] := Sum[Binomial[n, i] CatalanNumber[i] (n-i)!, {i, 0, n}];
    a /@ Range[0, 30] (* Jean-François Alcover, Dec 21 2020 *)

Formula

E.g.f.: exp(2*x)/(1-x)*(BesselI(0,2*x)-BesselI(1,2*x)).
a(n) = Sum_{i=0..n} binomial(n,i) * C(i) * (n-i)!.
a(n) ~ exp(2) * BesselI(2,2) * n!. - Vaclav Kotesovec, Oct 13 2016
Showing 1-3 of 3 results.