cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A277359 Number of self-avoiding planar walks starting at (0,0), ending at (n,n), remaining in the first quadrant and using steps (0,1) and (1,0) on or below the diagonal and using steps (1,1), (-1,1), and (1,-1) on or above the diagonal.

Original entry on oeis.org

1, 2, 7, 32, 176, 1126, 8227, 67768, 622706, 6323932, 70400734, 852952952, 11176241098, 157506733030, 2375966883371, 38200984291800, 652179787654530, 11783182484950980, 224623760504277810, 4505795627243046240, 94873821120923655336, 2092249161797280567516
Offset: 0

Views

Author

Alois P. Heinz, Oct 10 2016

Keywords

Comments

Both endpoints of each step have to satisfy the given restrictions.
a(n) is odd for n in {0, 2, 6, 14, 30, 62, ... } = { 2^n-2 | n>0 }.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<3, [1, 2, 7][n+1],
          ((n^3+10*n^2-10*n+1)*a(n-1)-(2*(4*n^3+2*n^2-29*n+28))
            *a(n-2)+(4*(n-2))*(2*n-3)^2*a(n-3))/(n*(n+1)))
        end:
    seq(a(n), n=0..25);
  • Mathematica
    a[n_] := a[n] = If[n<3, {1, 2, 7}[[n+1]], ((n^3+10*n^2-10*n+1)*a[n-1] - (2*(4*n^3+2*n^2-29*n+28))*a[n-2] + (4*(n-2))*(2*n-3)^2*a[n-3])/(n*(n+1)) ]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jan 25 2017, translated from Maple *)

Formula

a(n) ~ exp(1)*(exp(1)-2) * n! * n. - Vaclav Kotesovec, Oct 13 2016

A277175 Convolution of Catalan numbers and factorial numbers.

Original entry on oeis.org

1, 2, 5, 15, 53, 222, 1120, 6849, 50111, 427510, 4142900, 44693782, 529276962, 6813205468, 94642629984, 1410507388421, 22445134308123, 379776665469030, 6808016435182620, 128886547350655050, 2569493300908367550, 53805226930896987540, 1180673761078007109840
Offset: 0

Views

Author

Alois P. Heinz, Oct 02 2016

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<4, [1, 2, 5, 15][n+1],
          ((2*(n^4-n^3-19*n^2+48*n-5))*a(n-1)
           -(n+1)*(n^4+9*n^3-90*n^2+226*n-160)*a(n-2)
           +(2*(4*n^5-18*n^4-23*n^3+266*n^2-523*n+330))*a(n-3)
           -(4*(n-2))*(n^2-4*n+5)*(2*n-5)^2*a(n-4))/
           ((n+1)*(n^2-6*n+10)))
        end:
    seq(a(n), n=0..30);
  • Mathematica
    Table[Sum[CatalanNumber[k]*(n - k)!, {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 13 2016 *)

Formula

a(n) = Sum_{i=0..n} C(i) * (n-i)!.
a(n) ~ n! * (1 + 1/n + 2/n^2 + 7/n^3 + 31/n^4 + 163/n^5 + 979/n^6 + 6556/n^7 + 48150/n^8 + 383219/n^9 + 3275121/n^10 + ...), for coefficients see A277396. - Vaclav Kotesovec, Oct 13 2016
Showing 1-2 of 2 results.