cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A277358 Number of self-avoiding planar walks starting at (0,0), ending at (n,0), remaining in the first quadrant and using steps (0,1), (1,0), (1,1), (-1,1), and (1,-1).

Original entry on oeis.org

1, 2, 9, 58, 491, 5142, 64159, 929078, 15314361, 283091122, 5799651689, 130423248378, 3193954129651, 84607886351462, 2410542221526399, 73500777054712438, 2388182999073694001, 82374234401380995042, 3006071549433968619529, 115713455097715665452858
Offset: 0

Views

Author

Alois P. Heinz, Oct 10 2016

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> n!*coeff(series(exp(-x/2)/(1-2*x)^(5/4), x, n+1), x, n):
    seq(a(n), n=0..25);
    # second Maple program:
    a:= proc(n) option remember; `if`(n<2, n+1,
           2*n*a(n-1) +(n-1)*a(n-2))
        end:
    seq(a(n), n=0..25);
  • Mathematica
    a[n_] := a[n] = If[n < 2, n+1, 2*n*a[n-1] + (n-1)*a[n-2]];
    Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Mar 29 2017, translated from Maple *)

Formula

E.g.f.: exp(-x/2)/(1-2*x)^(5/4).
a(n) = 2*n*a(n-1) + (n-1)*a(n-2) for n>1, a(0)=1, a(1)=2.
a(n) ~ sqrt(Pi) * 2^(n+5/2) * n^(n+3/4) / (Gamma(1/4) * exp(n+1/4)). - Vaclav Kotesovec, Oct 13 2016

A277175 Convolution of Catalan numbers and factorial numbers.

Original entry on oeis.org

1, 2, 5, 15, 53, 222, 1120, 6849, 50111, 427510, 4142900, 44693782, 529276962, 6813205468, 94642629984, 1410507388421, 22445134308123, 379776665469030, 6808016435182620, 128886547350655050, 2569493300908367550, 53805226930896987540, 1180673761078007109840
Offset: 0

Views

Author

Alois P. Heinz, Oct 02 2016

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<4, [1, 2, 5, 15][n+1],
          ((2*(n^4-n^3-19*n^2+48*n-5))*a(n-1)
           -(n+1)*(n^4+9*n^3-90*n^2+226*n-160)*a(n-2)
           +(2*(4*n^5-18*n^4-23*n^3+266*n^2-523*n+330))*a(n-3)
           -(4*(n-2))*(n^2-4*n+5)*(2*n-5)^2*a(n-4))/
           ((n+1)*(n^2-6*n+10)))
        end:
    seq(a(n), n=0..30);
  • Mathematica
    Table[Sum[CatalanNumber[k]*(n - k)!, {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 13 2016 *)

Formula

a(n) = Sum_{i=0..n} C(i) * (n-i)!.
a(n) ~ n! * (1 + 1/n + 2/n^2 + 7/n^3 + 31/n^4 + 163/n^5 + 979/n^6 + 6556/n^7 + 48150/n^8 + 383219/n^9 + 3275121/n^10 + ...), for coefficients see A277396. - Vaclav Kotesovec, Oct 13 2016

A277176 Exponential convolution of Catalan numbers and factorial numbers.

Original entry on oeis.org

1, 2, 6, 23, 106, 572, 3564, 25377, 204446, 1844876, 18465556, 203179902, 2438366836, 31699511768, 443795839192, 6656947282725, 106511191881270, 1810690391626380, 32592427526913540, 619256124778620450, 12385122502136529420, 260087572569333384840
Offset: 0

Views

Author

Alois P. Heinz, Oct 02 2016

Keywords

Comments

a(n) = number of permutations of [n+1] in which the first entry does not start a (classical) 1234 pattern. The number of such permutations with first entry i is n!/(n + 1 - i)! C(n + 1 - i) where C(n) is the Catalan number A000108(n). - David Callan, Jun 12 2017

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, n+1,
         ((n^2+5*n-2)*a(n-1)-(4*n-2)*(n-1)*a(n-2))/(n+1))
        end:
    seq(a(n), n=0..30);
  • Mathematica
    a[n_] := Sum[Binomial[n, i] CatalanNumber[i] (n-i)!, {i, 0, n}];
    a /@ Range[0, 30] (* Jean-François Alcover, Dec 21 2020 *)

Formula

E.g.f.: exp(2*x)/(1-x)*(BesselI(0,2*x)-BesselI(1,2*x)).
a(n) = Sum_{i=0..n} binomial(n,i) * C(i) * (n-i)!.
a(n) ~ exp(2) * BesselI(2,2) * n!. - Vaclav Kotesovec, Oct 13 2016

A277360 Number of self-avoiding planar walks starting at (0,0), ending at (n,n), remaining in the first quadrant and using steps (0,1), (1,0), (1,1), (-1,1), and (1,-1).

Original entry on oeis.org

1, 9, 491, 64159, 15314361, 5799651689, 3193954129651, 2410542221526399, 2388182999073694001, 3006071549433968619529, 4685653563347872021885371, 8859314350383162594502273439, 19975392290718104323103596377961, 52949467092712165429316121638458089
Offset: 0

Views

Author

Alois P. Heinz, Oct 10 2016

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, 8*n+1,
          (16*n^2-4*n-1)*a(n-1)-n*(4*n-6)*a(n-2))
        end:
    seq(a(n), n=0..15);
  • Mathematica
    a[n_] := a[n] = If[n<2, 8n+1, (16n^2 - 4n - 1) a[n-1] - n (4n-6) a[n-2]];
    Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Mar 29 2017, translated from Maple *)

Formula

a(n) = (16*n^2-4*n-1)*a(n-1) - n*(4*n-6)*a(n-2) for n>1, a(0)=1, a(1)=9.
a(n) = (2n)! * [x^(2n)] exp(-x/2)/(1-2*x)^(5/4).
a(n) = A277358(2*n).
a(n) ~ sqrt(Pi) * 2^(4*n + 13/4) * n^(2*n + 3/4) / (Gamma(1/4) * exp(2*n + 1/4)). - Vaclav Kotesovec, Oct 13 2016

A277756 Total number of nodes summed over all self-avoiding planar walks starting at (0,0), ending at (n,n), remaining in the first quadrant and using steps (0,1) and (1,0) on or below the diagonal and using steps (1,1), (-1,1), and (1,-1) on or above the diagonal.

Original entry on oeis.org

1, 5, 32, 224, 1723, 14569, 135286, 1375882, 15263414, 183817326, 2391291386, 33443618930, 500611975023, 7988044467121, 135376576319870, 2428721569276698, 45988428905194350, 916607431346170686, 19182997480530342168, 420606731490047403144
Offset: 0

Views

Author

Alois P. Heinz, Oct 28 2016

Keywords

Comments

Both endpoints of each step have to satisfy the given restrictions.
a(n) is odd for n in {0, 1, 4, 5, 12, 13, ...} = { 2^i-4, 2^i-3 | i>=2 }.

Crossrefs

Programs

  • Maple
    b:= proc(x, y, t) option remember; `if`(x<0 or y<0, 0,
          `if`(x=0 and y=0, [1$2], (p-> p+[0, p[1]])(
          `if`(y=x, b(x-1, y-1, 0), 0)+
          `if`(y>x+1 and t<>2, b(x+1, y-1, 1), 0)+
          `if`(y>=x and t<>1, b(x-1, y+1, 2), 0))))
        end:
    a:= n-> b(n$2, 0)[2]:
    seq(a(n), n=0..25);
  • Mathematica
    b[x_, y_, t_] := b[x, y, t] = If[x < 0 || y < 0, {0, 0}, If[x == 0 && y == 0, {1, 1}, # + {0, #[[1]]}&[If[y < x, b[x-1, y, 0], 0] + If[y <= x, b[x, y-1, 0], 0] + If[y >= x, b[x-1, y-1, 0], 0] + If[y > x+1 && t != 2, b[x+1, y-1, 1], 0] + If[y >= x && t != 1, b[x-1, y+1, 2], 0]]]];
    a[n_] := b[n, n, 0][[2]];
    a /@ Range[0, 25] (* Jean-François Alcover, Oct 19 2019, after Alois P. Heinz *)

Formula

Recurrence: n^2*(n+1)*(8*n^16 - 324*n^15 + 6627*n^14 - 87027*n^13 + 780619*n^12 - 4852225*n^11 + 20603783*n^10 - 54969555*n^9 + 52518873*n^8 + 263990331*n^7 - 1493664427*n^6 + 3993049393*n^5 - 6338994427*n^4 + 5219525379*n^3 - 208155582*n^2 - 3017597166*n + 1500639210)*a(n) = (16*n^20 - 512*n^19 + 7810*n^18 - 63907*n^17 + 125587*n^16 + 3122233*n^15 - 38493280*n^14 + 230844282*n^13 - 835406452*n^12 + 1696593140*n^11 - 205259278*n^10 - 11408670034*n^9 + 41877803802*n^8 - 78160407832*n^7 + 66176874282*n^6 + 28732169489*n^5 - 121052415075*n^4 + 101990581575*n^3 - 30017409912*n^2 + 2376230256*n - 1500639210)*a(n-1) - (8*n^21 - 108*n^20 - 1537*n^19 + 68210*n^18 - 1094143*n^17 + 10095374*n^16 - 55215407*n^15 + 145867798*n^14 + 207571130*n^13 - 3618003314*n^12 + 16712054348*n^11 - 45380132762*n^10 + 68844700788*n^9 + 3118224998*n^8 - 280665562873*n^7 + 597311526024*n^6 - 339913057015*n^5 - 736454012982*n^4 + 1583292134673*n^3 - 1163990061738*n^2 + 239783072958*n + 66391169670)*a(n-2) + 2*(48*n^21 - 1536*n^20 + 23158*n^19 - 183757*n^18 + 221058*n^17 + 11736518*n^16 - 139812764*n^15 + 849893261*n^14 - 3103145857*n^13 + 5885285434*n^12 + 4549993672*n^11 - 76009600910*n^10 + 293460263060*n^9 - 661116809084*n^8 + 807883602348*n^7 + 2415933549*n^6 - 1768326853960*n^5 + 2768261414022*n^4 - 1612284665202*n^3 - 46857648087*n^2 + 218218164669*n + 98070916860)*a(n-3) - 4*(96*n^21 - 3824*n^20 + 76108*n^19 - 967312*n^18 + 8230515*n^17 - 45136547*n^16 + 127907470*n^15 + 169884028*n^14 - 3686404098*n^13 + 20071768963*n^12 - 67940536761*n^11 + 154148555189*n^10 - 193594359619*n^9 - 89277087131*n^8 + 921649634933*n^7 - 1534876599357*n^6 - 198633061278*n^5 + 4903659055674*n^4 - 8336147283495*n^3 + 5973270250797*n^2 - 1064158064361*n - 539137461240)*a(n-4) + 8*(n-4)^2*(2*n - 9)^2*(2*n - 7)*(8*n^16 - 196*n^15 + 2727*n^14 - 23789*n^13 + 119465*n^12 - 267991*n^11 - 414841*n^10 + 5444929*n^9 - 23332455*n^8 + 66119405*n^7 - 117282857*n^6 + 58753831*n^5 + 267053105*n^4 - 695018505*n^3 + 683003538*n^2 - 193704714*n - 67206510)*a(n-5). - Vaclav Kotesovec, Apr 25 2017
a(n) ~ c * n^(n + 7/2) / exp(n), where c = 0.81569546019... - Vaclav Kotesovec, Apr 25 2017
Showing 1-5 of 5 results.