cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A277359 Number of self-avoiding planar walks starting at (0,0), ending at (n,n), remaining in the first quadrant and using steps (0,1) and (1,0) on or below the diagonal and using steps (1,1), (-1,1), and (1,-1) on or above the diagonal.

Original entry on oeis.org

1, 2, 7, 32, 176, 1126, 8227, 67768, 622706, 6323932, 70400734, 852952952, 11176241098, 157506733030, 2375966883371, 38200984291800, 652179787654530, 11783182484950980, 224623760504277810, 4505795627243046240, 94873821120923655336, 2092249161797280567516
Offset: 0

Views

Author

Alois P. Heinz, Oct 10 2016

Keywords

Comments

Both endpoints of each step have to satisfy the given restrictions.
a(n) is odd for n in {0, 2, 6, 14, 30, 62, ... } = { 2^n-2 | n>0 }.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<3, [1, 2, 7][n+1],
          ((n^3+10*n^2-10*n+1)*a(n-1)-(2*(4*n^3+2*n^2-29*n+28))
            *a(n-2)+(4*(n-2))*(2*n-3)^2*a(n-3))/(n*(n+1)))
        end:
    seq(a(n), n=0..25);
  • Mathematica
    a[n_] := a[n] = If[n<3, {1, 2, 7}[[n+1]], ((n^3+10*n^2-10*n+1)*a[n-1] - (2*(4*n^3+2*n^2-29*n+28))*a[n-2] + (4*(n-2))*(2*n-3)^2*a[n-3])/(n*(n+1)) ]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jan 25 2017, translated from Maple *)

Formula

a(n) ~ exp(1)*(exp(1)-2) * n! * n. - Vaclav Kotesovec, Oct 13 2016

A285673 Total number of nodes summed over all self-avoiding planar walks starting at (0,0), ending at (n,n), remaining in the first quadrant and using steps (0,1), (1,0), (1,1), (-1,1), and (1,-1) with the restriction that (0,1) is never used below the diagonal and (1,0) is never used above the diagonal.

Original entry on oeis.org

1, 20, 907, 69928, 8190329, 1352590668, 299134112595, 85301875065360, 30466886170947633, 13319092946564641476, 6994728861780241970523, 4344874074153003071077560, 3150737511338249699332032297, 2637670112785000275509973725820, 2524664376417193478764383143006883
Offset: 0

Views

Author

Alois P. Heinz, Apr 24 2017

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(x, y, t) option remember;
          `if`(x<0 or y<0, 0,
          `if`(x=0 and y=0, [1$2], (p-> p+[0, p[1]])(
          `if`(x>y,  b(x-1, y,   0), 0)+
          `if`(y>x,  b(x,   y-1, 0), 0)+
                     b(x-1, y-1, 0)+
          `if`(t<>2, b(x+1, y-1, 1), 0)+
          `if`(t<>1, b(x-1, y+1, 2), 0))))
        end:
    a:= n-> b(n$2, 0)[2]:
    seq(a(n), n=0..20);
  • Mathematica
    b[x_, y_, t_] := b[x, y, t] = If[x < 0 || y < 0, 0, If[x == 0 && y == 0, {1, 1}, Function[p, p + {0, p[[1]]}][If[x > y,  b[x - 1, y,   0], 0] + If[y > x,  b[x, y - 1, 0], 0] + b[x - 1, y - 1, 0] + If[t != 2, b[x + 1, y - 1, 1], 0] + If[t != 1, b[x - 1, y + 1, 2], 0]]]];
    a[n_] := b[n, n, 0][[2]];
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jun 19 2017, translated from Maple *)

Formula

Recurrence: (768*n^7 - 9760*n^6 + 42960*n^5 - 72624*n^4 + 4272*n^3 + 120634*n^2 - 117042*n + 29523)*a(n) = 4*(1536*n^9 - 17216*n^8 + 56928*n^7 - 19536*n^6 - 199576*n^5 + 257144*n^4 + 67826*n^3 - 200220*n^2 + 46970*n - 201)*a(n-1) - (12288*n^11 - 143872*n^10 + 517376*n^9 - 304896*n^8 - 1803648*n^7 + 3174144*n^6 - 434416*n^5 - 1420224*n^4 - 672608*n^3 + 1216378*n^2 - 69926*n - 51561)*a(n-2) + 8*(n-1)*(3072*n^10 - 40576*n^9 + 179200*n^8 - 212640*n^7 - 583984*n^6 + 1881504*n^5 - 1496616*n^4 - 314158*n^3 + 703776*n^2 - 93829*n - 15912)*a(n-3) - 4*(n-2)*(n-1)*(2*n - 9)*(2*n - 7)*(768*n^7 - 4384*n^6 + 528*n^5 + 22656*n^4 - 24944*n^3 - 2966*n^2 + 8162*n - 1269)*a(n-4). - Vaclav Kotesovec, Apr 25 2017
a(n) ~ c * n^(2*n+4) * 2^(2*n) / exp(2*n), where c = 2.064339567965... - Vaclav Kotesovec, Apr 25 2017
Showing 1-2 of 2 results.