cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A284230 Number of self-avoiding planar walks starting at (0,0), ending at (n,0), remaining in the first quadrant and using steps (0,1), (1,0), (1,1), (-1,1), and (1,-1) with the restriction that (0,1) is never used below the diagonal and (1,0) is never used above the diagonal.

Original entry on oeis.org

1, 2, 5, 24, 111, 762, 5127, 45588, 400593, 4370634, 47311677, 611446464, 7857786015, 117346361778, 1745000283087, 29562853594284, 499180661754849, 9458257569095826, 178734707493557301, 3744942786114870888, 78294815164675006479, 1797384789345147560298
Offset: 0

Views

Author

Alois P. Heinz, Mar 23 2017

Keywords

Examples

			a(0) = 1: [(0,0)].
a(1) = 2: [(0,0),(1,0)], [(0,0),(0,1),(1,0)].
a(2) = 5: [(0,0),(1,0),(2,0)], [(0,0),(0,1),(1,0),(2,0)], [(0,0),(1,1),(2,0)], [(0,0),(0,1),(0,2),(1,1),(2,0)], [(0,0),(1,0),(0,1),(0,2),(1,1),(2,0)].
		

Crossrefs

Row sums of A284414.
Bisection (even part) gives A284461.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, n+1,
          (n+irem(n, 2))*a(n-1)+(n-1)*a(n-2))
        end:
    seq(a(n), n=0..25);
  • Mathematica
    a[n_]:=If[n<2, n + 1, (n + Mod[n,2]) * a[n - 1] + (n - 1) a[n - 2]]; Table[a[n], {n, 0, 25}] (* Indranil Ghosh, Mar 27 2017 *)

Formula

a(n) ~ c * n^(n+2) / exp(n), where c = 0.7741273379869056907732932906458364317717498069987762339667734187318... - Vaclav Kotesovec, Mar 27 2017
Conjecture: a(n) -a(n-1) +(-n^2-n+3)*a(n-2) +(-n+2)*a(n-3) +(n-2)*(n-3)*a(n-4)=0. - R. J. Mathar, Apr 09 2017

A284231 Total number of nodes summed over all self-avoiding planar walks starting at (0,0), ending at (n,0), remaining in the first quadrant and using steps (0,1), (1,0), (1,1), (-1,1), and (1,-1) with the restriction that (0,1) is never used below the diagonal and (1,0) is never used above the diagonal.

Original entry on oeis.org

1, 5, 21, 152, 975, 8835, 75499, 830180, 8819417, 114384573, 1450018173, 21689509992, 319180726887, 5411092531323, 90615453774771, 1717272516535812, 32234085990345105, 675335923050095253, 14040521125141683717, 322252846702242056280, 7349647183279936080543
Offset: 0

Views

Author

Alois P. Heinz, Mar 23 2017

Keywords

Examples

			a(0) = 1: [(0,0)].
a(1) = 5: [(0,0),(1,0)], [(0,0),(0,1),(1,0)].
a(2) = 21: [(0,0),(1,0),(2,0)], [(0,0),(0,1),(1,0),(2,0)], [(0,0),(1,1),(2,0)], [(0,0),(0,1),(0,2),(1,1),(2,0)], [(0,0),(1,0),(0,1),(0,2),(1,1),(2,0)].
		

Crossrefs

Formula

a(n) = Sum_{k=n..n*(n+3)/2} (k+1) * A284414(n,k).

A284461 Number of self-avoiding planar walks starting at (0,0), ending at (n,n), remaining in the first quadrant and using steps (0,1), (1,0), (1,1), (-1,1), and (1,-1) with the restriction that (0,1) is never used below the diagonal and (1,0) is never used above the diagonal.

Original entry on oeis.org

1, 5, 111, 5127, 400593, 47311677, 7857786015, 1745000283087, 499180661754849, 178734707493557301, 78294815164675006479, 41186656484051421462615, 25619826402721039367943729, 18600984174200732870460447213, 15588291843672510150758754601407
Offset: 0

Views

Author

Alois P. Heinz, Mar 27 2017

Keywords

Crossrefs

Bisection of A284230 (even part).

Programs

  • Maple
    b:= proc(n) option remember; `if`(n<2, n+1,
          (n+irem(n, 2))*b(n-1)+(n-1)*b(n-2))
        end:
    a:= n-> b(2*n):
    seq(a(n), n=0..15);
    # second Maple program:
    a:= proc(n) option remember; `if`(n<2, 4*n+1,
          ((2*n+1)^2-2)*a(n-1)-(4*n-6)*n*a(n-2))
        end:
    seq(a(n), n=0..15);
  • Mathematica
    a[n_] := a[n] = If[n<2, 4n+1, ((2n+1)^2-2) a[n-1] - (4n-6) n a[n-2]];
    Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Jun 19 2017, after 2nd Maple program *)

Formula

a(n) = A284230(2n).
a(n) = Sum_{k=2n..n*(2n+3)} A284414(2n,k).

A277424 Total number of nodes summed over all self-avoiding planar walks starting at (0,0), ending at (n,0), remaining in the first quadrant and using steps (0,1), (1,0), (1,1), (-1,1), and (1,-1).

Original entry on oeis.org

1, 5, 39, 379, 4457, 61503, 974107, 17412317, 346662981, 7605810685, 182298744203, 4738700778123, 132767583248917, 3988244997744743, 127859570155253607, 4357113615504651565, 157266354405499307369, 5993377455733610208885, 240479249123008267155343
Offset: 0

Views

Author

Alois P. Heinz, Oct 14 2016

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(x, y, t) option remember; `if`(x<0 or y<0, 0,
          `if`(x=0 and y=0, [1$2], (p-> p+ [0, p[1]])(
           b(x-1, y, 0)+ b(x, y-1, 0)+ b(x-1, y-1, 0)+
          `if`(t<>2, b(x+1, y-1, 1), 0)+
          `if`(t<>1, b(x-1, y+1, 2), 0))))
        end:
    a:= n-> b(n, 0$2)[2]:
    seq(a(n), n=0..25);
  • Mathematica
    b[x_, y_, t_] := b[x, y, t] = If[x < 0 || y < 0, 0, If[x == 0 && y == 0, {1, 1}, Function[p, p + {0, p[[1]]}][b[x - 1, y, 0] + b[x, y - 1, 0] + b[x - 1, y - 1, 0] + If[t != 2, b[x + 1, y - 1, 1], 0] + If[t != 1, b[x - 1, y + 1, 2], 0]]]];
    a[n_] := b[n, 0, 0][[2]];
    Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jun 19 2017, translated from Maple *)

Formula

From Vaclav Kotesovec, Oct 14 2016: (Start)
Recurrence: (n^3 + n^2 - 6*n + 1)*a(n) = (4*n^4 + 6*n^3 - 28*n^2 + 3*n + 4)*a(n-1) - (4*n^5 + 2*n^4 - 42*n^3 + 50*n^2 - 13)*a(n-2) - (n-2)*(4*n^4 + 8*n^3 - 34*n^2 - n + 16)*a(n-3) - (n-3)*(n-2)*(n^3 + 4*n^2 - n - 3)*a(n-4).
a(n) ~ sqrt(Pi) * 2^(n+3/2) * n^(n+11/4) / (3 * Gamma(1/4) * exp(n+1/4)).
(End)

A277756 Total number of nodes summed over all self-avoiding planar walks starting at (0,0), ending at (n,n), remaining in the first quadrant and using steps (0,1) and (1,0) on or below the diagonal and using steps (1,1), (-1,1), and (1,-1) on or above the diagonal.

Original entry on oeis.org

1, 5, 32, 224, 1723, 14569, 135286, 1375882, 15263414, 183817326, 2391291386, 33443618930, 500611975023, 7988044467121, 135376576319870, 2428721569276698, 45988428905194350, 916607431346170686, 19182997480530342168, 420606731490047403144
Offset: 0

Views

Author

Alois P. Heinz, Oct 28 2016

Keywords

Comments

Both endpoints of each step have to satisfy the given restrictions.
a(n) is odd for n in {0, 1, 4, 5, 12, 13, ...} = { 2^i-4, 2^i-3 | i>=2 }.

Crossrefs

Programs

  • Maple
    b:= proc(x, y, t) option remember; `if`(x<0 or y<0, 0,
          `if`(x=0 and y=0, [1$2], (p-> p+[0, p[1]])(
          `if`(y=x, b(x-1, y-1, 0), 0)+
          `if`(y>x+1 and t<>2, b(x+1, y-1, 1), 0)+
          `if`(y>=x and t<>1, b(x-1, y+1, 2), 0))))
        end:
    a:= n-> b(n$2, 0)[2]:
    seq(a(n), n=0..25);
  • Mathematica
    b[x_, y_, t_] := b[x, y, t] = If[x < 0 || y < 0, {0, 0}, If[x == 0 && y == 0, {1, 1}, # + {0, #[[1]]}&[If[y < x, b[x-1, y, 0], 0] + If[y <= x, b[x, y-1, 0], 0] + If[y >= x, b[x-1, y-1, 0], 0] + If[y > x+1 && t != 2, b[x+1, y-1, 1], 0] + If[y >= x && t != 1, b[x-1, y+1, 2], 0]]]];
    a[n_] := b[n, n, 0][[2]];
    a /@ Range[0, 25] (* Jean-François Alcover, Oct 19 2019, after Alois P. Heinz *)

Formula

Recurrence: n^2*(n+1)*(8*n^16 - 324*n^15 + 6627*n^14 - 87027*n^13 + 780619*n^12 - 4852225*n^11 + 20603783*n^10 - 54969555*n^9 + 52518873*n^8 + 263990331*n^7 - 1493664427*n^6 + 3993049393*n^5 - 6338994427*n^4 + 5219525379*n^3 - 208155582*n^2 - 3017597166*n + 1500639210)*a(n) = (16*n^20 - 512*n^19 + 7810*n^18 - 63907*n^17 + 125587*n^16 + 3122233*n^15 - 38493280*n^14 + 230844282*n^13 - 835406452*n^12 + 1696593140*n^11 - 205259278*n^10 - 11408670034*n^9 + 41877803802*n^8 - 78160407832*n^7 + 66176874282*n^6 + 28732169489*n^5 - 121052415075*n^4 + 101990581575*n^3 - 30017409912*n^2 + 2376230256*n - 1500639210)*a(n-1) - (8*n^21 - 108*n^20 - 1537*n^19 + 68210*n^18 - 1094143*n^17 + 10095374*n^16 - 55215407*n^15 + 145867798*n^14 + 207571130*n^13 - 3618003314*n^12 + 16712054348*n^11 - 45380132762*n^10 + 68844700788*n^9 + 3118224998*n^8 - 280665562873*n^7 + 597311526024*n^6 - 339913057015*n^5 - 736454012982*n^4 + 1583292134673*n^3 - 1163990061738*n^2 + 239783072958*n + 66391169670)*a(n-2) + 2*(48*n^21 - 1536*n^20 + 23158*n^19 - 183757*n^18 + 221058*n^17 + 11736518*n^16 - 139812764*n^15 + 849893261*n^14 - 3103145857*n^13 + 5885285434*n^12 + 4549993672*n^11 - 76009600910*n^10 + 293460263060*n^9 - 661116809084*n^8 + 807883602348*n^7 + 2415933549*n^6 - 1768326853960*n^5 + 2768261414022*n^4 - 1612284665202*n^3 - 46857648087*n^2 + 218218164669*n + 98070916860)*a(n-3) - 4*(96*n^21 - 3824*n^20 + 76108*n^19 - 967312*n^18 + 8230515*n^17 - 45136547*n^16 + 127907470*n^15 + 169884028*n^14 - 3686404098*n^13 + 20071768963*n^12 - 67940536761*n^11 + 154148555189*n^10 - 193594359619*n^9 - 89277087131*n^8 + 921649634933*n^7 - 1534876599357*n^6 - 198633061278*n^5 + 4903659055674*n^4 - 8336147283495*n^3 + 5973270250797*n^2 - 1064158064361*n - 539137461240)*a(n-4) + 8*(n-4)^2*(2*n - 9)^2*(2*n - 7)*(8*n^16 - 196*n^15 + 2727*n^14 - 23789*n^13 + 119465*n^12 - 267991*n^11 - 414841*n^10 + 5444929*n^9 - 23332455*n^8 + 66119405*n^7 - 117282857*n^6 + 58753831*n^5 + 267053105*n^4 - 695018505*n^3 + 683003538*n^2 - 193704714*n - 67206510)*a(n-5). - Vaclav Kotesovec, Apr 25 2017
a(n) ~ c * n^(n + 7/2) / exp(n), where c = 0.81569546019... - Vaclav Kotesovec, Apr 25 2017
Showing 1-5 of 5 results.