cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A284414 Number T(n,k) of self-avoiding planar walks of length k starting at (0,0), ending at (n,0), remaining in the first quadrant and using steps (0,1), (1,0), (1,1), (-1,1), and (1,-1) with the restriction that (0,1) is never used below the diagonal and (1,0) is never used above the diagonal; triangle T(n,k), n>=0, n<=k<=n*(n+3)/2, read by rows.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 4, 4, 4, 7, 3, 1, 1, 9, 8, 16, 21, 17, 15, 10, 9, 4, 1, 1, 21, 22, 54, 87, 87, 116, 99, 91, 78, 42, 31, 17, 10, 5, 1, 1, 51, 54, 178, 269, 370, 499, 536, 590, 560, 510, 420, 350, 268, 185, 132, 69, 44, 23, 11, 6, 1, 1
Offset: 0

Views

Author

Alois P. Heinz, Mar 26 2017

Keywords

Examples

			Triangle T(n,k) begins:
1;
.  1, 1;
.  .  2, 1, 1,  1;
.  .  .  4, 4,  4,  7,  3,  1,  1;
.  .  .  .  9,  8, 16, 21, 17, 15,  10,  9,  4,  1,  1;
.  .  .  .  .  21, 22, 54, 87, 87, 116, 99, 91, 78, 42, 31, 17, 10, 5, 1, 1;
		

Crossrefs

Row sums give A284230.
Column sums give A284415.
Antidiagonal sums give A284428.
T(n,n) gives A001006.
T(n,n+1) gives A284778.
T(n,2n) gives A284416.
T(n,n*(n+1)/2) gives A284418.
Cf. A000096, A284231, A284461, A284652 (this triangle read by columns).

Formula

Sum_{k=n..n*(n+3)/2} (k+1) * T(n,k) = A284231(n).

A284230 Number of self-avoiding planar walks starting at (0,0), ending at (n,0), remaining in the first quadrant and using steps (0,1), (1,0), (1,1), (-1,1), and (1,-1) with the restriction that (0,1) is never used below the diagonal and (1,0) is never used above the diagonal.

Original entry on oeis.org

1, 2, 5, 24, 111, 762, 5127, 45588, 400593, 4370634, 47311677, 611446464, 7857786015, 117346361778, 1745000283087, 29562853594284, 499180661754849, 9458257569095826, 178734707493557301, 3744942786114870888, 78294815164675006479, 1797384789345147560298
Offset: 0

Views

Author

Alois P. Heinz, Mar 23 2017

Keywords

Examples

			a(0) = 1: [(0,0)].
a(1) = 2: [(0,0),(1,0)], [(0,0),(0,1),(1,0)].
a(2) = 5: [(0,0),(1,0),(2,0)], [(0,0),(0,1),(1,0),(2,0)], [(0,0),(1,1),(2,0)], [(0,0),(0,1),(0,2),(1,1),(2,0)], [(0,0),(1,0),(0,1),(0,2),(1,1),(2,0)].
		

Crossrefs

Row sums of A284414.
Bisection (even part) gives A284461.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, n+1,
          (n+irem(n, 2))*a(n-1)+(n-1)*a(n-2))
        end:
    seq(a(n), n=0..25);
  • Mathematica
    a[n_]:=If[n<2, n + 1, (n + Mod[n,2]) * a[n - 1] + (n - 1) a[n - 2]]; Table[a[n], {n, 0, 25}] (* Indranil Ghosh, Mar 27 2017 *)

Formula

a(n) ~ c * n^(n+2) / exp(n), where c = 0.7741273379869056907732932906458364317717498069987762339667734187318... - Vaclav Kotesovec, Mar 27 2017
Conjecture: a(n) -a(n-1) +(-n^2-n+3)*a(n-2) +(-n+2)*a(n-3) +(n-2)*(n-3)*a(n-4)=0. - R. J. Mathar, Apr 09 2017

A285673 Total number of nodes summed over all self-avoiding planar walks starting at (0,0), ending at (n,n), remaining in the first quadrant and using steps (0,1), (1,0), (1,1), (-1,1), and (1,-1) with the restriction that (0,1) is never used below the diagonal and (1,0) is never used above the diagonal.

Original entry on oeis.org

1, 20, 907, 69928, 8190329, 1352590668, 299134112595, 85301875065360, 30466886170947633, 13319092946564641476, 6994728861780241970523, 4344874074153003071077560, 3150737511338249699332032297, 2637670112785000275509973725820, 2524664376417193478764383143006883
Offset: 0

Views

Author

Alois P. Heinz, Apr 24 2017

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(x, y, t) option remember;
          `if`(x<0 or y<0, 0,
          `if`(x=0 and y=0, [1$2], (p-> p+[0, p[1]])(
          `if`(x>y,  b(x-1, y,   0), 0)+
          `if`(y>x,  b(x,   y-1, 0), 0)+
                     b(x-1, y-1, 0)+
          `if`(t<>2, b(x+1, y-1, 1), 0)+
          `if`(t<>1, b(x-1, y+1, 2), 0))))
        end:
    a:= n-> b(n$2, 0)[2]:
    seq(a(n), n=0..20);
  • Mathematica
    b[x_, y_, t_] := b[x, y, t] = If[x < 0 || y < 0, 0, If[x == 0 && y == 0, {1, 1}, Function[p, p + {0, p[[1]]}][If[x > y,  b[x - 1, y,   0], 0] + If[y > x,  b[x, y - 1, 0], 0] + b[x - 1, y - 1, 0] + If[t != 2, b[x + 1, y - 1, 1], 0] + If[t != 1, b[x - 1, y + 1, 2], 0]]]];
    a[n_] := b[n, n, 0][[2]];
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jun 19 2017, translated from Maple *)

Formula

Recurrence: (768*n^7 - 9760*n^6 + 42960*n^5 - 72624*n^4 + 4272*n^3 + 120634*n^2 - 117042*n + 29523)*a(n) = 4*(1536*n^9 - 17216*n^8 + 56928*n^7 - 19536*n^6 - 199576*n^5 + 257144*n^4 + 67826*n^3 - 200220*n^2 + 46970*n - 201)*a(n-1) - (12288*n^11 - 143872*n^10 + 517376*n^9 - 304896*n^8 - 1803648*n^7 + 3174144*n^6 - 434416*n^5 - 1420224*n^4 - 672608*n^3 + 1216378*n^2 - 69926*n - 51561)*a(n-2) + 8*(n-1)*(3072*n^10 - 40576*n^9 + 179200*n^8 - 212640*n^7 - 583984*n^6 + 1881504*n^5 - 1496616*n^4 - 314158*n^3 + 703776*n^2 - 93829*n - 15912)*a(n-3) - 4*(n-2)*(n-1)*(2*n - 9)*(2*n - 7)*(768*n^7 - 4384*n^6 + 528*n^5 + 22656*n^4 - 24944*n^3 - 2966*n^2 + 8162*n - 1269)*a(n-4). - Vaclav Kotesovec, Apr 25 2017
a(n) ~ c * n^(2*n+4) * 2^(2*n) / exp(2*n), where c = 2.064339567965... - Vaclav Kotesovec, Apr 25 2017

A284652 Number T(n,k) of self-avoiding planar walks of length k starting at (0,0), ending at (n,0), remaining in the first quadrant and using steps (0,1), (1,0), (1,1), (-1,1), and (1,-1) with the restriction that (0,1) is never used below the diagonal and (1,0) is never used above the diagonal; triangle T(n,k), k>=0, floor((sqrt(1+8*k)-1)/2)<=n<=k, read by columns.

Original entry on oeis.org

1, 1, 1, 2, 1, 4, 1, 4, 9, 1, 4, 8, 21, 7, 16, 22, 51, 3, 21, 54, 54, 127, 1, 17, 87, 178, 142, 323, 1, 15, 87, 269, 565, 370, 835, 10, 116, 370, 896, 1766, 983, 2188, 9, 99, 499, 1473, 2776, 5446, 2627, 5798, 4, 91, 536, 2290, 5528, 8657, 16655, 7086, 15511
Offset: 0

Views

Author

Alois P. Heinz, Mar 31 2017

Keywords

Examples

			Triangle T(n,k) begins:
1;
.  1, 1;
.  .  2, 1, 1,  1;
.  .  .  4, 4,  4,  7,   3,   1,   1;
.  .  .  .  9,  8, 16,  21,  17,  15,   10,    9, ... ;
.  .  .  .  .  21, 22,  54,  87,  87,  116,   99, ... ;
.  .  .  .  .   .  51,  54, 178, 269,  370,  499, ... ;
.  .  .  .  .   .   .  127, 142, 565,  896, 1473, ... ;
.  .  .  .  .   .   .    .  323, 370, 1766, 2776, ... ;
.  .  .  .  .   .   .    .    .  835,  983, 5446, ... ;
.  .  .  .  .   .   .    .    .     . 2188, 2627, ... ;
		

Crossrefs

Row sums give A284230.
Column sums give A284415.
Antidiagonal sums give A284428.
T(n,n) gives A001006.
T(n,n+1) gives A284778.
T(n,2n) gives A284416.
T(n,n*(n+1)/2) gives A284418.
Column heights give A122797(k+1).
Cf. A000096, A284231, A284461, A284414 (this triangle read by rows).

Formula

Sum_{k=n..n*(n+3)/2} (k+1) * T(n,k) = A284231(n).
Showing 1-4 of 4 results.