cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A284778 Number of self-avoiding planar walks of length n+1 starting at (0,0), ending at (n,0), remaining in the first quadrant and using steps (0,1), (1,0), (1,1), (-1,1), and (1,-1) with the restriction that (0,1) is never used below the diagonal and (1,0) is never used above the diagonal.

Original entry on oeis.org

0, 1, 1, 4, 8, 22, 54, 142, 370, 983, 2627, 7086, 19238, 52561, 144377, 398518, 1104794, 3074809, 8588093, 24064642, 67630898, 190584766, 538412426, 1524554956, 4326119748, 12300296227, 35037658099, 99977847308, 285741659312, 817901027070, 2344475178110
Offset: 0

Views

Author

Alois P. Heinz, Apr 02 2017

Keywords

Comments

From Gus Wiseman, Nov 15 2022: (Start)
Conjecture: Also the number of topologically series-reduced ordered rooted trees with n + 3 vertices and more than one branch of the root. This would imply a(n) = A187306(n+1) - A005043(n+1). For example, the a(1) = 1 through a(5) = 22 trees are:
(ooo) (oooo) (ooooo) (oooooo) (ooooooo)
((oo)oo) ((oo)ooo) ((oo)oooo)
(o(oo)o) ((ooo)oo) ((ooo)ooo)
(oo(oo)) (o(oo)oo) ((oooo)oo)
(o(ooo)o) (o(oo)ooo)
(oo(oo)o) (o(ooo)oo)
(oo(ooo)) (o(oooo)o)
(ooo(oo)) (oo(oo)oo)
(oo(ooo)o)
(oo(oooo))
(ooo(oo)o)
(ooo(ooo))
(oooo(oo))
(((oo)o)oo)
((o(oo))oo)
((oo)(oo)o)
((oo)o(oo))
(o((oo)o)o)
(o(o(oo))o)
(o(oo)(oo))
(oo((oo)o))
(oo(o(oo)))
(End)

Crossrefs

First upper diagonal of A284414, A284652.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<3, (3-n)*n/2,
          ((n^2-n+3)*a(n-1)+(5*n-2)*n*a(n-2)+
           3*(n-1)*n*a(n-3))/((n+3)*(n-1)))
        end:
    seq(a(n), n=0..35);
  • Mathematica
    CoefficientList[Series[(1 - 2*x - x^2 - Sqrt[1 - 4*x + 2*x^2 + 4*x^3 - 3*x^4])/(2*(x + 1)*x^3), {x, 0, 50}], x] (* Indranil Ghosh, Apr 02 2017 *)
  • Maxima
    a(n):=if n=0 then 0 else sum(((k+1)^2*sum(binomial(i,n-1-2*k-i)*binomial(n-k,i),i,0,n-1-2*k))/(n-k),k,0,floor((n)/2)); /* Vladimir Kruchinin, Mar 20 2023 */

Formula

G.f.: (1-2*x-x^2-sqrt(1-4*x+2*x^2+4*x^3-3*x^4))/(2*(x+1)*x^3).
Recursion: see Maple program.
a(n) = A284414(n,n+1) = A284652(n,n+1).
a(n) ~ 3^(n+5/2) / (4*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Apr 02 2017
a(n) = Sum_{k=0..floor(n/2)} (k+1)^2/(n-k)*Sum_{i=0..n-1-2*k} C(i,n-1-2*k-i)*C(n-k,i), n>0, a(0)=0. - Vladimir Kruchinin, Mar 20 2023

A284230 Number of self-avoiding planar walks starting at (0,0), ending at (n,0), remaining in the first quadrant and using steps (0,1), (1,0), (1,1), (-1,1), and (1,-1) with the restriction that (0,1) is never used below the diagonal and (1,0) is never used above the diagonal.

Original entry on oeis.org

1, 2, 5, 24, 111, 762, 5127, 45588, 400593, 4370634, 47311677, 611446464, 7857786015, 117346361778, 1745000283087, 29562853594284, 499180661754849, 9458257569095826, 178734707493557301, 3744942786114870888, 78294815164675006479, 1797384789345147560298
Offset: 0

Views

Author

Alois P. Heinz, Mar 23 2017

Keywords

Examples

			a(0) = 1: [(0,0)].
a(1) = 2: [(0,0),(1,0)], [(0,0),(0,1),(1,0)].
a(2) = 5: [(0,0),(1,0),(2,0)], [(0,0),(0,1),(1,0),(2,0)], [(0,0),(1,1),(2,0)], [(0,0),(0,1),(0,2),(1,1),(2,0)], [(0,0),(1,0),(0,1),(0,2),(1,1),(2,0)].
		

Crossrefs

Row sums of A284414.
Bisection (even part) gives A284461.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, n+1,
          (n+irem(n, 2))*a(n-1)+(n-1)*a(n-2))
        end:
    seq(a(n), n=0..25);
  • Mathematica
    a[n_]:=If[n<2, n + 1, (n + Mod[n,2]) * a[n - 1] + (n - 1) a[n - 2]]; Table[a[n], {n, 0, 25}] (* Indranil Ghosh, Mar 27 2017 *)

Formula

a(n) ~ c * n^(n+2) / exp(n), where c = 0.7741273379869056907732932906458364317717498069987762339667734187318... - Vaclav Kotesovec, Mar 27 2017
Conjecture: a(n) -a(n-1) +(-n^2-n+3)*a(n-2) +(-n+2)*a(n-3) +(n-2)*(n-3)*a(n-4)=0. - R. J. Mathar, Apr 09 2017

A284231 Total number of nodes summed over all self-avoiding planar walks starting at (0,0), ending at (n,0), remaining in the first quadrant and using steps (0,1), (1,0), (1,1), (-1,1), and (1,-1) with the restriction that (0,1) is never used below the diagonal and (1,0) is never used above the diagonal.

Original entry on oeis.org

1, 5, 21, 152, 975, 8835, 75499, 830180, 8819417, 114384573, 1450018173, 21689509992, 319180726887, 5411092531323, 90615453774771, 1717272516535812, 32234085990345105, 675335923050095253, 14040521125141683717, 322252846702242056280, 7349647183279936080543
Offset: 0

Views

Author

Alois P. Heinz, Mar 23 2017

Keywords

Examples

			a(0) = 1: [(0,0)].
a(1) = 5: [(0,0),(1,0)], [(0,0),(0,1),(1,0)].
a(2) = 21: [(0,0),(1,0),(2,0)], [(0,0),(0,1),(1,0),(2,0)], [(0,0),(1,1),(2,0)], [(0,0),(0,1),(0,2),(1,1),(2,0)], [(0,0),(1,0),(0,1),(0,2),(1,1),(2,0)].
		

Crossrefs

Formula

a(n) = Sum_{k=n..n*(n+3)/2} (k+1) * A284414(n,k).

A284461 Number of self-avoiding planar walks starting at (0,0), ending at (n,n), remaining in the first quadrant and using steps (0,1), (1,0), (1,1), (-1,1), and (1,-1) with the restriction that (0,1) is never used below the diagonal and (1,0) is never used above the diagonal.

Original entry on oeis.org

1, 5, 111, 5127, 400593, 47311677, 7857786015, 1745000283087, 499180661754849, 178734707493557301, 78294815164675006479, 41186656484051421462615, 25619826402721039367943729, 18600984174200732870460447213, 15588291843672510150758754601407
Offset: 0

Views

Author

Alois P. Heinz, Mar 27 2017

Keywords

Crossrefs

Bisection of A284230 (even part).

Programs

  • Maple
    b:= proc(n) option remember; `if`(n<2, n+1,
          (n+irem(n, 2))*b(n-1)+(n-1)*b(n-2))
        end:
    a:= n-> b(2*n):
    seq(a(n), n=0..15);
    # second Maple program:
    a:= proc(n) option remember; `if`(n<2, 4*n+1,
          ((2*n+1)^2-2)*a(n-1)-(4*n-6)*n*a(n-2))
        end:
    seq(a(n), n=0..15);
  • Mathematica
    a[n_] := a[n] = If[n<2, 4n+1, ((2n+1)^2-2) a[n-1] - (4n-6) n a[n-2]];
    Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Jun 19 2017, after 2nd Maple program *)

Formula

a(n) = A284230(2n).
a(n) = Sum_{k=2n..n*(2n+3)} A284414(2n,k).

A284415 Number of self-avoiding planar walks of length n starting at (0,0), ending on the x-axis, remaining in the first quadrant and using steps (0,1), (1,0), (1,1), (-1,1), and (1,-1) with the restriction that (0,1) is never used below the diagonal and (1,0) is never used above the diagonal.

Original entry on oeis.org

1, 1, 3, 5, 14, 34, 96, 259, 748, 2142, 6329, 18727, 56358, 170370, 520354, 1596980, 4935307, 15319460, 47794472, 149681904, 470620062, 1484513696, 4697619876, 14906459690, 47426014833, 151247657528, 483426998881, 1548323383749, 4968516324954, 15972198595374
Offset: 0

Views

Author

Alois P. Heinz, Mar 26 2017

Keywords

Crossrefs

Column sums of A284414.

Formula

a(n) = Sum_{j=floor((sqrt(1+8*n)-1)/2)..n} A284414(j,n).

A284416 Number of self-avoiding planar walks of length 2n starting at (0,0), ending at (n,0), remaining in the first quadrant and using steps (0,1), (1,0), (1,1), (-1,1), and (1,-1) with the restriction that (0,1) is never used below the diagonal and (1,0) is never used above the diagonal.

Original entry on oeis.org

1, 1, 1, 7, 17, 116, 536, 3732, 21609, 152225, 991680, 7142207, 49671146, 364955208, 2644449147, 19764753353, 147264417970, 1116423286310, 8488332597668, 65109780090520, 502742629038600, 3893865922507871, 30436537169536769, 237651376621912220
Offset: 0

Views

Author

Alois P. Heinz, Mar 26 2017

Keywords

Crossrefs

Cf. A284414.

Formula

a(n) = A284414(n,2n).

A284418 Number of self-avoiding planar walks of length n*(n+1)/2 starting at (0,0), ending at (n,0), remaining in the first quadrant and using steps (0,1), (1,0), (1,1), (-1,1), and (1,-1) with the restriction that (0,1) is never used below the diagonal and (1,0) is never used above the diagonal.

Original entry on oeis.org

1, 1, 1, 7, 10, 31, 69, 196, 451, 1168, 2813, 7119, 17618, 44206, 111399, 277972, 709411, 1763795, 4543873, 11269489, 29244239, 72402587, 188977618, 467258134, 1225383748, 3026799348, 7969173506, 19669004793, 51959167749, 128161003199, 339530403506
Offset: 0

Views

Author

Alois P. Heinz, Mar 26 2017

Keywords

Crossrefs

Formula

a(n) = A284414(n,n*(n+1)/2).

A284428 Number of all self-avoiding planar walks of length j (0<=j<=n) starting at (0,0), ending at (n-j,0), remaining in the first quadrant and using steps (0,1), (1,0), (1,1), (-1,1), and (1,-1) with the restriction that (0,1) is never used below the diagonal and (1,0) is never used above the diagonal.

Original entry on oeis.org

1, 0, 1, 1, 2, 1, 5, 5, 13, 15, 40, 44, 123, 156, 402, 536, 1361, 1857, 4689, 6681, 16536, 24286, 59400, 89131, 216114, 331324, 796029, 1243168, 2963859, 4700410, 11133792, 17901901, 42155014, 68618679, 160736012, 264497624, 616693942, 1024713750, 2379184108
Offset: 0

Views

Author

Alois P. Heinz, Mar 26 2017

Keywords

Crossrefs

Antidiagonal sums of A284414.

A284652 Number T(n,k) of self-avoiding planar walks of length k starting at (0,0), ending at (n,0), remaining in the first quadrant and using steps (0,1), (1,0), (1,1), (-1,1), and (1,-1) with the restriction that (0,1) is never used below the diagonal and (1,0) is never used above the diagonal; triangle T(n,k), k>=0, floor((sqrt(1+8*k)-1)/2)<=n<=k, read by columns.

Original entry on oeis.org

1, 1, 1, 2, 1, 4, 1, 4, 9, 1, 4, 8, 21, 7, 16, 22, 51, 3, 21, 54, 54, 127, 1, 17, 87, 178, 142, 323, 1, 15, 87, 269, 565, 370, 835, 10, 116, 370, 896, 1766, 983, 2188, 9, 99, 499, 1473, 2776, 5446, 2627, 5798, 4, 91, 536, 2290, 5528, 8657, 16655, 7086, 15511
Offset: 0

Views

Author

Alois P. Heinz, Mar 31 2017

Keywords

Examples

			Triangle T(n,k) begins:
1;
.  1, 1;
.  .  2, 1, 1,  1;
.  .  .  4, 4,  4,  7,   3,   1,   1;
.  .  .  .  9,  8, 16,  21,  17,  15,   10,    9, ... ;
.  .  .  .  .  21, 22,  54,  87,  87,  116,   99, ... ;
.  .  .  .  .   .  51,  54, 178, 269,  370,  499, ... ;
.  .  .  .  .   .   .  127, 142, 565,  896, 1473, ... ;
.  .  .  .  .   .   .    .  323, 370, 1766, 2776, ... ;
.  .  .  .  .   .   .    .    .  835,  983, 5446, ... ;
.  .  .  .  .   .   .    .    .     . 2188, 2627, ... ;
		

Crossrefs

Row sums give A284230.
Column sums give A284415.
Antidiagonal sums give A284428.
T(n,n) gives A001006.
T(n,n+1) gives A284778.
T(n,2n) gives A284416.
T(n,n*(n+1)/2) gives A284418.
Column heights give A122797(k+1).
Cf. A000096, A284231, A284461, A284414 (this triangle read by rows).

Formula

Sum_{k=n..n*(n+3)/2} (k+1) * T(n,k) = A284231(n).
Showing 1-9 of 9 results.