A284414
Number T(n,k) of self-avoiding planar walks of length k starting at (0,0), ending at (n,0), remaining in the first quadrant and using steps (0,1), (1,0), (1,1), (-1,1), and (1,-1) with the restriction that (0,1) is never used below the diagonal and (1,0) is never used above the diagonal; triangle T(n,k), n>=0, n<=k<=n*(n+3)/2, read by rows.
Original entry on oeis.org
1, 1, 1, 2, 1, 1, 1, 4, 4, 4, 7, 3, 1, 1, 9, 8, 16, 21, 17, 15, 10, 9, 4, 1, 1, 21, 22, 54, 87, 87, 116, 99, 91, 78, 42, 31, 17, 10, 5, 1, 1, 51, 54, 178, 269, 370, 499, 536, 590, 560, 510, 420, 350, 268, 185, 132, 69, 44, 23, 11, 6, 1, 1
Offset: 0
Triangle T(n,k) begins:
1;
. 1, 1;
. . 2, 1, 1, 1;
. . . 4, 4, 4, 7, 3, 1, 1;
. . . . 9, 8, 16, 21, 17, 15, 10, 9, 4, 1, 1;
. . . . . 21, 22, 54, 87, 87, 116, 99, 91, 78, 42, 31, 17, 10, 5, 1, 1;
A001900
Successive numerators of Wallis's approximation to Pi/2 (unreduced).
Original entry on oeis.org
1, 2, 4, 16, 64, 384, 2304, 18432, 147456, 1474560, 14745600, 176947200, 2123366400, 29727129600, 416179814400, 6658877030400, 106542032486400, 1917756584755200, 34519618525593600, 690392370511872000, 13807847410237440000, 303772643025223680000
Offset: 0
From _Wolfdieter Lang_, Dec 06 2017: (Start)
Partial products of the rows N (for numerators a(n)) and D (for denominators b(n) = A000246(n+1)) begin:
n: 0 1 2 3 4 5 6 7 8 9 10 ...
N: 1 2 2 4 4 6 6 8 8 10 10 ...
D: 1 1 3 3 5 5 7 7 9 9 11 ...
a(n): 1 2 4 16 64 384 2304 18432 147456 14745601 4745600 ...
b(n): 1 1 3 9 45 225 1575 11025 99225 893025 9823275 ... (End)
- H.-D. Ebbinghaus et al., Numbers, Springer, 1990, p. 146.
- Alois P. Heinz, Table of n, a(n) for n = 0..449
- John Derbyshire, Prime Obsession, Plume books, p. 16, 2003.
- Jonathan Sondow, A faster product for Pi and a new integral for ln(Pi/2), arXiv:math/0401406 [math.NT], 2004.
- Jonathan Sondow, A faster product for Pi and a new integral for ln(Pi/2), Amer. Math. Monthly 112 (2005), 729-734 and 113 (2006), 670.
- Index to divisibility sequences
-
a[n_] := a[n] = If[n==0, 1, (n+Mod[n, 2]) a[n-1]];
a /@ Range[0, 21] (* Jean-François Alcover, Jan 31 2020 *)
-
a(n)=if(n<0,0,prod(k=1,n,if(k%2,k+1,k)))
A277358
Number of self-avoiding planar walks starting at (0,0), ending at (n,0), remaining in the first quadrant and using steps (0,1), (1,0), (1,1), (-1,1), and (1,-1).
Original entry on oeis.org
1, 2, 9, 58, 491, 5142, 64159, 929078, 15314361, 283091122, 5799651689, 130423248378, 3193954129651, 84607886351462, 2410542221526399, 73500777054712438, 2388182999073694001, 82374234401380995042, 3006071549433968619529, 115713455097715665452858
Offset: 0
-
a:= n-> n!*coeff(series(exp(-x/2)/(1-2*x)^(5/4), x, n+1), x, n):
seq(a(n), n=0..25);
# second Maple program:
a:= proc(n) option remember; `if`(n<2, n+1,
2*n*a(n-1) +(n-1)*a(n-2))
end:
seq(a(n), n=0..25);
-
a[n_] := a[n] = If[n < 2, n+1, 2*n*a[n-1] + (n-1)*a[n-2]];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Mar 29 2017, translated from Maple *)
A284231
Total number of nodes summed over all self-avoiding planar walks starting at (0,0), ending at (n,0), remaining in the first quadrant and using steps (0,1), (1,0), (1,1), (-1,1), and (1,-1) with the restriction that (0,1) is never used below the diagonal and (1,0) is never used above the diagonal.
Original entry on oeis.org
1, 5, 21, 152, 975, 8835, 75499, 830180, 8819417, 114384573, 1450018173, 21689509992, 319180726887, 5411092531323, 90615453774771, 1717272516535812, 32234085990345105, 675335923050095253, 14040521125141683717, 322252846702242056280, 7349647183279936080543
Offset: 0
a(0) = 1: [(0,0)].
a(1) = 5: [(0,0),(1,0)], [(0,0),(0,1),(1,0)].
a(2) = 21: [(0,0),(1,0),(2,0)], [(0,0),(0,1),(1,0),(2,0)], [(0,0),(1,1),(2,0)], [(0,0),(0,1),(0,2),(1,1),(2,0)], [(0,0),(1,0),(0,1),(0,2),(1,1),(2,0)].
A285673
Total number of nodes summed over all self-avoiding planar walks starting at (0,0), ending at (n,n), remaining in the first quadrant and using steps (0,1), (1,0), (1,1), (-1,1), and (1,-1) with the restriction that (0,1) is never used below the diagonal and (1,0) is never used above the diagonal.
Original entry on oeis.org
1, 20, 907, 69928, 8190329, 1352590668, 299134112595, 85301875065360, 30466886170947633, 13319092946564641476, 6994728861780241970523, 4344874074153003071077560, 3150737511338249699332032297, 2637670112785000275509973725820, 2524664376417193478764383143006883
Offset: 0
-
b:= proc(x, y, t) option remember;
`if`(x<0 or y<0, 0,
`if`(x=0 and y=0, [1$2], (p-> p+[0, p[1]])(
`if`(x>y, b(x-1, y, 0), 0)+
`if`(y>x, b(x, y-1, 0), 0)+
b(x-1, y-1, 0)+
`if`(t<>2, b(x+1, y-1, 1), 0)+
`if`(t<>1, b(x-1, y+1, 2), 0))))
end:
a:= n-> b(n$2, 0)[2]:
seq(a(n), n=0..20);
-
b[x_, y_, t_] := b[x, y, t] = If[x < 0 || y < 0, 0, If[x == 0 && y == 0, {1, 1}, Function[p, p + {0, p[[1]]}][If[x > y, b[x - 1, y, 0], 0] + If[y > x, b[x, y - 1, 0], 0] + b[x - 1, y - 1, 0] + If[t != 2, b[x + 1, y - 1, 1], 0] + If[t != 1, b[x - 1, y + 1, 2], 0]]]];
a[n_] := b[n, n, 0][[2]];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jun 19 2017, translated from Maple *)
A284461
Number of self-avoiding planar walks starting at (0,0), ending at (n,n), remaining in the first quadrant and using steps (0,1), (1,0), (1,1), (-1,1), and (1,-1) with the restriction that (0,1) is never used below the diagonal and (1,0) is never used above the diagonal.
Original entry on oeis.org
1, 5, 111, 5127, 400593, 47311677, 7857786015, 1745000283087, 499180661754849, 178734707493557301, 78294815164675006479, 41186656484051421462615, 25619826402721039367943729, 18600984174200732870460447213, 15588291843672510150758754601407
Offset: 0
-
b:= proc(n) option remember; `if`(n<2, n+1,
(n+irem(n, 2))*b(n-1)+(n-1)*b(n-2))
end:
a:= n-> b(2*n):
seq(a(n), n=0..15);
# second Maple program:
a:= proc(n) option remember; `if`(n<2, 4*n+1,
((2*n+1)^2-2)*a(n-1)-(4*n-6)*n*a(n-2))
end:
seq(a(n), n=0..15);
-
a[n_] := a[n] = If[n<2, 4n+1, ((2n+1)^2-2) a[n-1] - (4n-6) n a[n-2]];
Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Jun 19 2017, after 2nd Maple program *)
A284652
Number T(n,k) of self-avoiding planar walks of length k starting at (0,0), ending at (n,0), remaining in the first quadrant and using steps (0,1), (1,0), (1,1), (-1,1), and (1,-1) with the restriction that (0,1) is never used below the diagonal and (1,0) is never used above the diagonal; triangle T(n,k), k>=0, floor((sqrt(1+8*k)-1)/2)<=n<=k, read by columns.
Original entry on oeis.org
1, 1, 1, 2, 1, 4, 1, 4, 9, 1, 4, 8, 21, 7, 16, 22, 51, 3, 21, 54, 54, 127, 1, 17, 87, 178, 142, 323, 1, 15, 87, 269, 565, 370, 835, 10, 116, 370, 896, 1766, 983, 2188, 9, 99, 499, 1473, 2776, 5446, 2627, 5798, 4, 91, 536, 2290, 5528, 8657, 16655, 7086, 15511
Offset: 0
Triangle T(n,k) begins:
1;
. 1, 1;
. . 2, 1, 1, 1;
. . . 4, 4, 4, 7, 3, 1, 1;
. . . . 9, 8, 16, 21, 17, 15, 10, 9, ... ;
. . . . . 21, 22, 54, 87, 87, 116, 99, ... ;
. . . . . . 51, 54, 178, 269, 370, 499, ... ;
. . . . . . . 127, 142, 565, 896, 1473, ... ;
. . . . . . . . 323, 370, 1766, 2776, ... ;
. . . . . . . . . 835, 983, 5446, ... ;
. . . . . . . . . . 2188, 2627, ... ;
Showing 1-7 of 7 results.
Comments