A011781
Sextuple factorial numbers: a(n) = Product_{k=0..n-1} (6*k+3).
Original entry on oeis.org
1, 3, 27, 405, 8505, 229635, 7577955, 295540245, 13299311025, 678264862275, 38661097149675, 2435649120429525, 168059789309637225, 12604484198222791875, 1020963220056046141875, 88823800144876014343125, 8260613413473469333910625, 817800727933873464057151875
Offset: 0
Lee D. Killough (killough(AT)wagner.convex.com)
G.f. = 1 + 3*x + 27*x^2 + 405*x^3 + 8505*x^4 + 229635*x^5 + 7577955*x^6 + ...
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Fatemeh Bagherzadeh, M. Bremner, and S. Madariaga, Jordan Trialgebras and Post-Jordan Algebras, arXiv:1611.01214 [math.RA], 2016.
- Murray Bremner and Martin Markl, Distributive laws between the Three Graces, arXiv:1809.08191 [math.AT], 2018.
- Bodo Lass, Démonstration combinatoire de la formule de Harer-Zagier, (A combinatorial proof of the Harer-Zagier formula) C. R. Acad. Sci. Paris, Serie I, 333(3) (2001), 155-160.
- Bodo Lass, Démonstration combinatoire de la formule de Harer-Zagier, (A combinatorial proof of the Harer-Zagier formula) C. R. Acad. Sci. Paris, Serie I, Vol. 333, No. 3 (2001), pp. 155-160; alternative link.
- Valery Liskovets, A Note on the Total Number of Double Eulerian Circuits in Multigraphs , Journal of Integer Sequences, Vol. 5 (2002), Article 02.2.5.
-
F:=Factorial;; List([0..20], n-> (3/2)^n*(F(2*n)/F(n)) ); # G. C. Greubel, Aug 20 2019
-
[(3/2)^n*Factorial(2*n)/Factorial(n):n in [0..20]]; // Vincenzo Librandi, May 09 2012
-
Table[Product[6k+3,{k,0,n-1}],{n,0,20}] (* or *) Table[6^(n-1) Pochhammer[ 1/2,n-1],{n,21}] (* Harvey P. Dale, May 09 2012 *)
Table[6^n*Pochhammer[1/2, n], {n,0,20}] (* G. C. Greubel, Aug 20 2019 *)
-
{a(n) = if( n<0, (-1)^n / a(-n), (3/2)^n * (2*n)! / n!)}; /* Michael Somos, Feb 10 2002, revised and extended Michael Somos, Jan 06 2017 */
-
[6^n*rising_factorial(1/2, n) for n in (0..20)] # G. C. Greubel, Aug 20 2019
A284230
Number of self-avoiding planar walks starting at (0,0), ending at (n,0), remaining in the first quadrant and using steps (0,1), (1,0), (1,1), (-1,1), and (1,-1) with the restriction that (0,1) is never used below the diagonal and (1,0) is never used above the diagonal.
Original entry on oeis.org
1, 2, 5, 24, 111, 762, 5127, 45588, 400593, 4370634, 47311677, 611446464, 7857786015, 117346361778, 1745000283087, 29562853594284, 499180661754849, 9458257569095826, 178734707493557301, 3744942786114870888, 78294815164675006479, 1797384789345147560298
Offset: 0
a(0) = 1: [(0,0)].
a(1) = 2: [(0,0),(1,0)], [(0,0),(0,1),(1,0)].
a(2) = 5: [(0,0),(1,0),(2,0)], [(0,0),(0,1),(1,0),(2,0)], [(0,0),(1,1),(2,0)], [(0,0),(0,1),(0,2),(1,1),(2,0)], [(0,0),(1,0),(0,1),(0,2),(1,1),(2,0)].
Bisection (even part) gives
A284461.
-
a:= proc(n) option remember; `if`(n<2, n+1,
(n+irem(n, 2))*a(n-1)+(n-1)*a(n-2))
end:
seq(a(n), n=0..25);
-
a[n_]:=If[n<2, n + 1, (n + Mod[n,2]) * a[n - 1] + (n - 1) a[n - 2]]; Table[a[n], {n, 0, 25}] (* Indranil Ghosh, Mar 27 2017 *)
A277359
Number of self-avoiding planar walks starting at (0,0), ending at (n,n), remaining in the first quadrant and using steps (0,1) and (1,0) on or below the diagonal and using steps (1,1), (-1,1), and (1,-1) on or above the diagonal.
Original entry on oeis.org
1, 2, 7, 32, 176, 1126, 8227, 67768, 622706, 6323932, 70400734, 852952952, 11176241098, 157506733030, 2375966883371, 38200984291800, 652179787654530, 11783182484950980, 224623760504277810, 4505795627243046240, 94873821120923655336, 2092249161797280567516
Offset: 0
-
a:= proc(n) option remember; `if`(n<3, [1, 2, 7][n+1],
((n^3+10*n^2-10*n+1)*a(n-1)-(2*(4*n^3+2*n^2-29*n+28))
*a(n-2)+(4*(n-2))*(2*n-3)^2*a(n-3))/(n*(n+1)))
end:
seq(a(n), n=0..25);
-
a[n_] := a[n] = If[n<3, {1, 2, 7}[[n+1]], ((n^3+10*n^2-10*n+1)*a[n-1] - (2*(4*n^3+2*n^2-29*n+28))*a[n-2] + (4*(n-2))*(2*n-3)^2*a[n-3])/(n*(n+1)) ]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jan 25 2017, translated from Maple *)
A277424
Total number of nodes summed over all self-avoiding planar walks starting at (0,0), ending at (n,0), remaining in the first quadrant and using steps (0,1), (1,0), (1,1), (-1,1), and (1,-1).
Original entry on oeis.org
1, 5, 39, 379, 4457, 61503, 974107, 17412317, 346662981, 7605810685, 182298744203, 4738700778123, 132767583248917, 3988244997744743, 127859570155253607, 4357113615504651565, 157266354405499307369, 5993377455733610208885, 240479249123008267155343
Offset: 0
-
b:= proc(x, y, t) option remember; `if`(x<0 or y<0, 0,
`if`(x=0 and y=0, [1$2], (p-> p+ [0, p[1]])(
b(x-1, y, 0)+ b(x, y-1, 0)+ b(x-1, y-1, 0)+
`if`(t<>2, b(x+1, y-1, 1), 0)+
`if`(t<>1, b(x-1, y+1, 2), 0))))
end:
a:= n-> b(n, 0$2)[2]:
seq(a(n), n=0..25);
-
b[x_, y_, t_] := b[x, y, t] = If[x < 0 || y < 0, 0, If[x == 0 && y == 0, {1, 1}, Function[p, p + {0, p[[1]]}][b[x - 1, y, 0] + b[x, y - 1, 0] + b[x - 1, y - 1, 0] + If[t != 2, b[x + 1, y - 1, 1], 0] + If[t != 1, b[x - 1, y + 1, 2], 0]]]];
a[n_] := b[n, 0, 0][[2]];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jun 19 2017, translated from Maple *)
A277360
Number of self-avoiding planar walks starting at (0,0), ending at (n,n), remaining in the first quadrant and using steps (0,1), (1,0), (1,1), (-1,1), and (1,-1).
Original entry on oeis.org
1, 9, 491, 64159, 15314361, 5799651689, 3193954129651, 2410542221526399, 2388182999073694001, 3006071549433968619529, 4685653563347872021885371, 8859314350383162594502273439, 19975392290718104323103596377961, 52949467092712165429316121638458089
Offset: 0
-
a:= proc(n) option remember; `if`(n<2, 8*n+1,
(16*n^2-4*n-1)*a(n-1)-n*(4*n-6)*a(n-2))
end:
seq(a(n), n=0..15);
-
a[n_] := a[n] = If[n<2, 8n+1, (16n^2 - 4n - 1) a[n-1] - n (4n-6) a[n-2]];
Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Mar 29 2017, translated from Maple *)
A317985
Number of self-avoiding planar walks starting at (0,0), ending at (n,0), remaining in the first quadrant and using steps (0,1), (1,0), (1,1), (-1,1), and (1,-1) such that (0,1) is never used directly before or after (1,0) or (1,1).
Original entry on oeis.org
1, 2, 7, 38, 284, 2691, 30890, 416449, 6448243, 112751661, 2197200541, 47214026822, 1109022356759, 28269085769331, 777140210643254, 22918982645377342, 721764216387297451, 24173661551378798838, 857993099925433301350, 32168967331652245055171
Offset: 0
-
a:= proc(n) option remember; `if`(n<4, [1, 2, 7, 38][n+1],
2*n*a(n-1) -(n-2)*a(n-2) -(2*n-5)*a(n-3))
end:
seq(a(n), n=0..25);
-
a = DifferenceRoot[Function[{y, n}, {(2n+1) y[n] + (n+1) y[n+1] + (-2n-6)* y[n+2] + y[n+3] == 0, y[0] == 1, y[1] == 2, y[2] == 7, y[3] == 38}]];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, May 12 2020, after Maple *)
nmax = 20; CoefficientList[Simplify[Normal[Series[-1 - 1/x^(3/4) * E^(-1/(2*x) + (3*ArcTanh[(1 + 4*x)/Sqrt[17]])/(4*Sqrt[17]))* (-2 + x + 2*x^2)^(1/8) * Integrate[E^(1/(2*x)) * Simplify[Normal[Series[(-2 + 2*x + x^2)/(x^(5/4)*(-2 + x + 2*x^2)^(9/8))/ E^(3*ArcTanh[(1 + 4*x)/Sqrt[17]] / (4*Sqrt[17])), {x, 0, nmax}]], x > 0], x], {x, 0, nmax}]], x > 0], x] (* Vaclav Kotesovec, May 14 2020 *)
Showing 1-6 of 6 results.
Comments