cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A011781 Sextuple factorial numbers: a(n) = Product_{k=0..n-1} (6*k+3).

Original entry on oeis.org

1, 3, 27, 405, 8505, 229635, 7577955, 295540245, 13299311025, 678264862275, 38661097149675, 2435649120429525, 168059789309637225, 12604484198222791875, 1020963220056046141875, 88823800144876014343125, 8260613413473469333910625, 817800727933873464057151875
Offset: 0

Views

Author

Lee D. Killough (killough(AT)wagner.convex.com)

Keywords

Comments

Total number of Eulerian circuits in rooted labeled multigraphs with n edges. - Valery A. Liskovets, Apr 07 2002
Number of self-avoiding planar walks starting at (0,0), ending at (n,0), remaining in the east quadrant {(x,y): x >= |y|} and using steps (0,1), (0,-1), (1,1), (-1,-1), and (1,0). - Alois P. Heinz, Oct 13 2016

Examples

			G.f. = 1 + 3*x + 27*x^2 + 405*x^3 + 8505*x^4 + 229635*x^5 + 7577955*x^6 + ...
		

Crossrefs

Programs

  • GAP
    F:=Factorial;; List([0..20], n-> (3/2)^n*(F(2*n)/F(n)) ); # G. C. Greubel, Aug 20 2019
  • Magma
    [(3/2)^n*Factorial(2*n)/Factorial(n):n in [0..20]]; // Vincenzo Librandi, May 09 2012
    
  • Mathematica
    Table[Product[6k+3,{k,0,n-1}],{n,0,20}] (* or *) Table[6^(n-1) Pochhammer[ 1/2,n-1],{n,21}] (* Harvey P. Dale, May 09 2012 *)
    Table[6^n*Pochhammer[1/2, n], {n,0,20}] (* G. C. Greubel, Aug 20 2019 *)
  • PARI
    {a(n) = if( n<0, (-1)^n / a(-n), (3/2)^n * (2*n)! / n!)}; /* Michael Somos, Feb 10 2002, revised and extended Michael Somos, Jan 06 2017 */
    
  • Sage
    [6^n*rising_factorial(1/2, n) for n in (0..20)] # G. C. Greubel, Aug 20 2019
    

Formula

E.g.f.: (1-6*x)^(-1/2).
a(n) = 3^n*(2*n-1)!!.
G.f.: 1/(1-3*x/(1-6*x/(1-9*x/(1-12*x/(1-15*x/(1-18*x/(1-21*x/(1-24*x/(1-... (continued fraction). - Philippe Deléham, Jan 08 2012
a(n) = (-3)^n*Sum_{k=0..n} 2^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. [Mircea Merca, May 03 2012]
G.f.: T(0), where T(k) = 1 - 3*x*(k+1)/( 3*x*(k+1) - 1/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 24 2013
a(n) = 6^n * gamma(n + 1/2) / sqrt(Pi). - Daniel Suteu, Jan 06 2017
0 = a(n)*(+6*a(n+1) - a(n+2)) + a(n+1)*(+a(n+1)) and a(n) = (-1)^n / a(-n) for all n in Z. - Michael Somos, Jan 06 2017
D-finite with recurrence: a(n) +3*(-2*n+1)*a(n-1)=0. - R. J. Mathar, Jan 20 2018
From Amiram Eldar, Feb 11 2022: (Start)
Sum_{n>=0} 1/a(n) = 1 + exp(1/6)*sqrt(Pi/6)*erf(1/sqrt(6)), where erf is the error function.
Sum_{n>=0} (-1)^n/a(n) = 1 - exp(-1/6)*sqrt(Pi/6)*erfi(1/sqrt(6)), where erfi is the imaginary error function. (End)

A284230 Number of self-avoiding planar walks starting at (0,0), ending at (n,0), remaining in the first quadrant and using steps (0,1), (1,0), (1,1), (-1,1), and (1,-1) with the restriction that (0,1) is never used below the diagonal and (1,0) is never used above the diagonal.

Original entry on oeis.org

1, 2, 5, 24, 111, 762, 5127, 45588, 400593, 4370634, 47311677, 611446464, 7857786015, 117346361778, 1745000283087, 29562853594284, 499180661754849, 9458257569095826, 178734707493557301, 3744942786114870888, 78294815164675006479, 1797384789345147560298
Offset: 0

Views

Author

Alois P. Heinz, Mar 23 2017

Keywords

Examples

			a(0) = 1: [(0,0)].
a(1) = 2: [(0,0),(1,0)], [(0,0),(0,1),(1,0)].
a(2) = 5: [(0,0),(1,0),(2,0)], [(0,0),(0,1),(1,0),(2,0)], [(0,0),(1,1),(2,0)], [(0,0),(0,1),(0,2),(1,1),(2,0)], [(0,0),(1,0),(0,1),(0,2),(1,1),(2,0)].
		

Crossrefs

Row sums of A284414.
Bisection (even part) gives A284461.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, n+1,
          (n+irem(n, 2))*a(n-1)+(n-1)*a(n-2))
        end:
    seq(a(n), n=0..25);
  • Mathematica
    a[n_]:=If[n<2, n + 1, (n + Mod[n,2]) * a[n - 1] + (n - 1) a[n - 2]]; Table[a[n], {n, 0, 25}] (* Indranil Ghosh, Mar 27 2017 *)

Formula

a(n) ~ c * n^(n+2) / exp(n), where c = 0.7741273379869056907732932906458364317717498069987762339667734187318... - Vaclav Kotesovec, Mar 27 2017
Conjecture: a(n) -a(n-1) +(-n^2-n+3)*a(n-2) +(-n+2)*a(n-3) +(n-2)*(n-3)*a(n-4)=0. - R. J. Mathar, Apr 09 2017

A277359 Number of self-avoiding planar walks starting at (0,0), ending at (n,n), remaining in the first quadrant and using steps (0,1) and (1,0) on or below the diagonal and using steps (1,1), (-1,1), and (1,-1) on or above the diagonal.

Original entry on oeis.org

1, 2, 7, 32, 176, 1126, 8227, 67768, 622706, 6323932, 70400734, 852952952, 11176241098, 157506733030, 2375966883371, 38200984291800, 652179787654530, 11783182484950980, 224623760504277810, 4505795627243046240, 94873821120923655336, 2092249161797280567516
Offset: 0

Views

Author

Alois P. Heinz, Oct 10 2016

Keywords

Comments

Both endpoints of each step have to satisfy the given restrictions.
a(n) is odd for n in {0, 2, 6, 14, 30, 62, ... } = { 2^n-2 | n>0 }.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<3, [1, 2, 7][n+1],
          ((n^3+10*n^2-10*n+1)*a(n-1)-(2*(4*n^3+2*n^2-29*n+28))
            *a(n-2)+(4*(n-2))*(2*n-3)^2*a(n-3))/(n*(n+1)))
        end:
    seq(a(n), n=0..25);
  • Mathematica
    a[n_] := a[n] = If[n<3, {1, 2, 7}[[n+1]], ((n^3+10*n^2-10*n+1)*a[n-1] - (2*(4*n^3+2*n^2-29*n+28))*a[n-2] + (4*(n-2))*(2*n-3)^2*a[n-3])/(n*(n+1)) ]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jan 25 2017, translated from Maple *)

Formula

a(n) ~ exp(1)*(exp(1)-2) * n! * n. - Vaclav Kotesovec, Oct 13 2016

A277424 Total number of nodes summed over all self-avoiding planar walks starting at (0,0), ending at (n,0), remaining in the first quadrant and using steps (0,1), (1,0), (1,1), (-1,1), and (1,-1).

Original entry on oeis.org

1, 5, 39, 379, 4457, 61503, 974107, 17412317, 346662981, 7605810685, 182298744203, 4738700778123, 132767583248917, 3988244997744743, 127859570155253607, 4357113615504651565, 157266354405499307369, 5993377455733610208885, 240479249123008267155343
Offset: 0

Views

Author

Alois P. Heinz, Oct 14 2016

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(x, y, t) option remember; `if`(x<0 or y<0, 0,
          `if`(x=0 and y=0, [1$2], (p-> p+ [0, p[1]])(
           b(x-1, y, 0)+ b(x, y-1, 0)+ b(x-1, y-1, 0)+
          `if`(t<>2, b(x+1, y-1, 1), 0)+
          `if`(t<>1, b(x-1, y+1, 2), 0))))
        end:
    a:= n-> b(n, 0$2)[2]:
    seq(a(n), n=0..25);
  • Mathematica
    b[x_, y_, t_] := b[x, y, t] = If[x < 0 || y < 0, 0, If[x == 0 && y == 0, {1, 1}, Function[p, p + {0, p[[1]]}][b[x - 1, y, 0] + b[x, y - 1, 0] + b[x - 1, y - 1, 0] + If[t != 2, b[x + 1, y - 1, 1], 0] + If[t != 1, b[x - 1, y + 1, 2], 0]]]];
    a[n_] := b[n, 0, 0][[2]];
    Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jun 19 2017, translated from Maple *)

Formula

From Vaclav Kotesovec, Oct 14 2016: (Start)
Recurrence: (n^3 + n^2 - 6*n + 1)*a(n) = (4*n^4 + 6*n^3 - 28*n^2 + 3*n + 4)*a(n-1) - (4*n^5 + 2*n^4 - 42*n^3 + 50*n^2 - 13)*a(n-2) - (n-2)*(4*n^4 + 8*n^3 - 34*n^2 - n + 16)*a(n-3) - (n-3)*(n-2)*(n^3 + 4*n^2 - n - 3)*a(n-4).
a(n) ~ sqrt(Pi) * 2^(n+3/2) * n^(n+11/4) / (3 * Gamma(1/4) * exp(n+1/4)).
(End)

A277360 Number of self-avoiding planar walks starting at (0,0), ending at (n,n), remaining in the first quadrant and using steps (0,1), (1,0), (1,1), (-1,1), and (1,-1).

Original entry on oeis.org

1, 9, 491, 64159, 15314361, 5799651689, 3193954129651, 2410542221526399, 2388182999073694001, 3006071549433968619529, 4685653563347872021885371, 8859314350383162594502273439, 19975392290718104323103596377961, 52949467092712165429316121638458089
Offset: 0

Views

Author

Alois P. Heinz, Oct 10 2016

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, 8*n+1,
          (16*n^2-4*n-1)*a(n-1)-n*(4*n-6)*a(n-2))
        end:
    seq(a(n), n=0..15);
  • Mathematica
    a[n_] := a[n] = If[n<2, 8n+1, (16n^2 - 4n - 1) a[n-1] - n (4n-6) a[n-2]];
    Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Mar 29 2017, translated from Maple *)

Formula

a(n) = (16*n^2-4*n-1)*a(n-1) - n*(4*n-6)*a(n-2) for n>1, a(0)=1, a(1)=9.
a(n) = (2n)! * [x^(2n)] exp(-x/2)/(1-2*x)^(5/4).
a(n) = A277358(2*n).
a(n) ~ sqrt(Pi) * 2^(4*n + 13/4) * n^(2*n + 3/4) / (Gamma(1/4) * exp(2*n + 1/4)). - Vaclav Kotesovec, Oct 13 2016

A317985 Number of self-avoiding planar walks starting at (0,0), ending at (n,0), remaining in the first quadrant and using steps (0,1), (1,0), (1,1), (-1,1), and (1,-1) such that (0,1) is never used directly before or after (1,0) or (1,1).

Original entry on oeis.org

1, 2, 7, 38, 284, 2691, 30890, 416449, 6448243, 112751661, 2197200541, 47214026822, 1109022356759, 28269085769331, 777140210643254, 22918982645377342, 721764216387297451, 24173661551378798838, 857993099925433301350, 32168967331652245055171
Offset: 0

Views

Author

Alois P. Heinz, Oct 02 2018

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<4, [1, 2, 7, 38][n+1],
          2*n*a(n-1) -(n-2)*a(n-2) -(2*n-5)*a(n-3))
        end:
    seq(a(n), n=0..25);
  • Mathematica
    a = DifferenceRoot[Function[{y, n}, {(2n+1) y[n] + (n+1) y[n+1] + (-2n-6)* y[n+2] + y[n+3] == 0, y[0] == 1, y[1] == 2, y[2] == 7, y[3] == 38}]];
    Table[a[n], {n, 0, 25}] (* Jean-François Alcover, May 12 2020, after Maple *)
    nmax = 20; CoefficientList[Simplify[Normal[Series[-1 - 1/x^(3/4) * E^(-1/(2*x) + (3*ArcTanh[(1 + 4*x)/Sqrt[17]])/(4*Sqrt[17]))* (-2 + x + 2*x^2)^(1/8) * Integrate[E^(1/(2*x)) * Simplify[Normal[Series[(-2 + 2*x + x^2)/(x^(5/4)*(-2 + x + 2*x^2)^(9/8))/ E^(3*ArcTanh[(1 + 4*x)/Sqrt[17]] / (4*Sqrt[17])), {x, 0, nmax}]], x > 0], x], {x, 0, nmax}]], x > 0], x] (* Vaclav Kotesovec, May 14 2020 *)

Formula

a(n) ~ c * 2^n * n! / n^(1/4), where c = 1.054816768531988358301631965137203014379828345839423725829486842843413035459... - Vaclav Kotesovec, May 14 2020
Showing 1-6 of 6 results.