cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A277358 Number of self-avoiding planar walks starting at (0,0), ending at (n,0), remaining in the first quadrant and using steps (0,1), (1,0), (1,1), (-1,1), and (1,-1).

Original entry on oeis.org

1, 2, 9, 58, 491, 5142, 64159, 929078, 15314361, 283091122, 5799651689, 130423248378, 3193954129651, 84607886351462, 2410542221526399, 73500777054712438, 2388182999073694001, 82374234401380995042, 3006071549433968619529, 115713455097715665452858
Offset: 0

Views

Author

Alois P. Heinz, Oct 10 2016

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> n!*coeff(series(exp(-x/2)/(1-2*x)^(5/4), x, n+1), x, n):
    seq(a(n), n=0..25);
    # second Maple program:
    a:= proc(n) option remember; `if`(n<2, n+1,
           2*n*a(n-1) +(n-1)*a(n-2))
        end:
    seq(a(n), n=0..25);
  • Mathematica
    a[n_] := a[n] = If[n < 2, n+1, 2*n*a[n-1] + (n-1)*a[n-2]];
    Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Mar 29 2017, translated from Maple *)

Formula

E.g.f.: exp(-x/2)/(1-2*x)^(5/4).
a(n) = 2*n*a(n-1) + (n-1)*a(n-2) for n>1, a(0)=1, a(1)=2.
a(n) ~ sqrt(Pi) * 2^(n+5/2) * n^(n+3/4) / (Gamma(1/4) * exp(n+1/4)). - Vaclav Kotesovec, Oct 13 2016

A284231 Total number of nodes summed over all self-avoiding planar walks starting at (0,0), ending at (n,0), remaining in the first quadrant and using steps (0,1), (1,0), (1,1), (-1,1), and (1,-1) with the restriction that (0,1) is never used below the diagonal and (1,0) is never used above the diagonal.

Original entry on oeis.org

1, 5, 21, 152, 975, 8835, 75499, 830180, 8819417, 114384573, 1450018173, 21689509992, 319180726887, 5411092531323, 90615453774771, 1717272516535812, 32234085990345105, 675335923050095253, 14040521125141683717, 322252846702242056280, 7349647183279936080543
Offset: 0

Views

Author

Alois P. Heinz, Mar 23 2017

Keywords

Examples

			a(0) = 1: [(0,0)].
a(1) = 5: [(0,0),(1,0)], [(0,0),(0,1),(1,0)].
a(2) = 21: [(0,0),(1,0),(2,0)], [(0,0),(0,1),(1,0),(2,0)], [(0,0),(1,1),(2,0)], [(0,0),(0,1),(0,2),(1,1),(2,0)], [(0,0),(1,0),(0,1),(0,2),(1,1),(2,0)].
		

Crossrefs

Formula

a(n) = Sum_{k=n..n*(n+3)/2} (k+1) * A284414(n,k).

A285673 Total number of nodes summed over all self-avoiding planar walks starting at (0,0), ending at (n,n), remaining in the first quadrant and using steps (0,1), (1,0), (1,1), (-1,1), and (1,-1) with the restriction that (0,1) is never used below the diagonal and (1,0) is never used above the diagonal.

Original entry on oeis.org

1, 20, 907, 69928, 8190329, 1352590668, 299134112595, 85301875065360, 30466886170947633, 13319092946564641476, 6994728861780241970523, 4344874074153003071077560, 3150737511338249699332032297, 2637670112785000275509973725820, 2524664376417193478764383143006883
Offset: 0

Views

Author

Alois P. Heinz, Apr 24 2017

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(x, y, t) option remember;
          `if`(x<0 or y<0, 0,
          `if`(x=0 and y=0, [1$2], (p-> p+[0, p[1]])(
          `if`(x>y,  b(x-1, y,   0), 0)+
          `if`(y>x,  b(x,   y-1, 0), 0)+
                     b(x-1, y-1, 0)+
          `if`(t<>2, b(x+1, y-1, 1), 0)+
          `if`(t<>1, b(x-1, y+1, 2), 0))))
        end:
    a:= n-> b(n$2, 0)[2]:
    seq(a(n), n=0..20);
  • Mathematica
    b[x_, y_, t_] := b[x, y, t] = If[x < 0 || y < 0, 0, If[x == 0 && y == 0, {1, 1}, Function[p, p + {0, p[[1]]}][If[x > y,  b[x - 1, y,   0], 0] + If[y > x,  b[x, y - 1, 0], 0] + b[x - 1, y - 1, 0] + If[t != 2, b[x + 1, y - 1, 1], 0] + If[t != 1, b[x - 1, y + 1, 2], 0]]]];
    a[n_] := b[n, n, 0][[2]];
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jun 19 2017, translated from Maple *)

Formula

Recurrence: (768*n^7 - 9760*n^6 + 42960*n^5 - 72624*n^4 + 4272*n^3 + 120634*n^2 - 117042*n + 29523)*a(n) = 4*(1536*n^9 - 17216*n^8 + 56928*n^7 - 19536*n^6 - 199576*n^5 + 257144*n^4 + 67826*n^3 - 200220*n^2 + 46970*n - 201)*a(n-1) - (12288*n^11 - 143872*n^10 + 517376*n^9 - 304896*n^8 - 1803648*n^7 + 3174144*n^6 - 434416*n^5 - 1420224*n^4 - 672608*n^3 + 1216378*n^2 - 69926*n - 51561)*a(n-2) + 8*(n-1)*(3072*n^10 - 40576*n^9 + 179200*n^8 - 212640*n^7 - 583984*n^6 + 1881504*n^5 - 1496616*n^4 - 314158*n^3 + 703776*n^2 - 93829*n - 15912)*a(n-3) - 4*(n-2)*(n-1)*(2*n - 9)*(2*n - 7)*(768*n^7 - 4384*n^6 + 528*n^5 + 22656*n^4 - 24944*n^3 - 2966*n^2 + 8162*n - 1269)*a(n-4). - Vaclav Kotesovec, Apr 25 2017
a(n) ~ c * n^(2*n+4) * 2^(2*n) / exp(2*n), where c = 2.064339567965... - Vaclav Kotesovec, Apr 25 2017
Showing 1-3 of 3 results.