cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A277358 Number of self-avoiding planar walks starting at (0,0), ending at (n,0), remaining in the first quadrant and using steps (0,1), (1,0), (1,1), (-1,1), and (1,-1).

Original entry on oeis.org

1, 2, 9, 58, 491, 5142, 64159, 929078, 15314361, 283091122, 5799651689, 130423248378, 3193954129651, 84607886351462, 2410542221526399, 73500777054712438, 2388182999073694001, 82374234401380995042, 3006071549433968619529, 115713455097715665452858
Offset: 0

Views

Author

Alois P. Heinz, Oct 10 2016

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> n!*coeff(series(exp(-x/2)/(1-2*x)^(5/4), x, n+1), x, n):
    seq(a(n), n=0..25);
    # second Maple program:
    a:= proc(n) option remember; `if`(n<2, n+1,
           2*n*a(n-1) +(n-1)*a(n-2))
        end:
    seq(a(n), n=0..25);
  • Mathematica
    a[n_] := a[n] = If[n < 2, n+1, 2*n*a[n-1] + (n-1)*a[n-2]];
    Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Mar 29 2017, translated from Maple *)

Formula

E.g.f.: exp(-x/2)/(1-2*x)^(5/4).
a(n) = 2*n*a(n-1) + (n-1)*a(n-2) for n>1, a(0)=1, a(1)=2.
a(n) ~ sqrt(Pi) * 2^(n+5/2) * n^(n+3/4) / (Gamma(1/4) * exp(n+1/4)). - Vaclav Kotesovec, Oct 13 2016

A277359 Number of self-avoiding planar walks starting at (0,0), ending at (n,n), remaining in the first quadrant and using steps (0,1) and (1,0) on or below the diagonal and using steps (1,1), (-1,1), and (1,-1) on or above the diagonal.

Original entry on oeis.org

1, 2, 7, 32, 176, 1126, 8227, 67768, 622706, 6323932, 70400734, 852952952, 11176241098, 157506733030, 2375966883371, 38200984291800, 652179787654530, 11783182484950980, 224623760504277810, 4505795627243046240, 94873821120923655336, 2092249161797280567516
Offset: 0

Views

Author

Alois P. Heinz, Oct 10 2016

Keywords

Comments

Both endpoints of each step have to satisfy the given restrictions.
a(n) is odd for n in {0, 2, 6, 14, 30, 62, ... } = { 2^n-2 | n>0 }.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<3, [1, 2, 7][n+1],
          ((n^3+10*n^2-10*n+1)*a(n-1)-(2*(4*n^3+2*n^2-29*n+28))
            *a(n-2)+(4*(n-2))*(2*n-3)^2*a(n-3))/(n*(n+1)))
        end:
    seq(a(n), n=0..25);
  • Mathematica
    a[n_] := a[n] = If[n<3, {1, 2, 7}[[n+1]], ((n^3+10*n^2-10*n+1)*a[n-1] - (2*(4*n^3+2*n^2-29*n+28))*a[n-2] + (4*(n-2))*(2*n-3)^2*a[n-3])/(n*(n+1)) ]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jan 25 2017, translated from Maple *)

Formula

a(n) ~ exp(1)*(exp(1)-2) * n! * n. - Vaclav Kotesovec, Oct 13 2016
Showing 1-2 of 2 results.