cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277208 Numbers m such that m-1 = (tau(m-1)-1)^k for some k>=0, where tau(m) is the number of divisors of m (A000005).

Original entry on oeis.org

2, 5, 17, 28, 3126, 3376, 65537, 823544, 3748097, 52521876
Offset: 1

Views

Author

Jaroslav Krizek, Oct 10 2016

Keywords

Comments

Corresponding pairs of numbers (tau(m-1)-1, k): (0, 0); (2, 2); (4, 2); (3, 3); (5, 5); (15, 3); (16, 4); (7, 7); ...
Numbers from A125137 (numbers of the form p^p + 1 where p = prime) are terms: 285311670612, 302875106592254, 827240261886336764178, 1978419655660313589123980, 20880467999847912034355032910568, ...
Prime terms are in A258429: 2, 5, 17, 65537, ...
A Fermat prime from A019434 of the form F(n) = 2^(2^n) + 1 is a term if k = 2^n * log(2) / log(2^n) is an integer.
a(11), if it exists, is > 10^10. - Lars Blomberg, Nov 14 2016

Examples

			3376 is in the sequence because 3375 = (tau(3375)-1)^3 = 15^3.
		

Crossrefs

Programs

  • Magma
    Set(Sort([n: n in[2..1000000], k in [0..20] |  (n-1) eq (NumberOfDivisors(n-1)-1)^k]));
    
  • PARI
    isok(n) = {if (n==2, return(1)); my(dd = numdiv(n-1) - 1); if (dd > 1, my(k = 1); while(dd^k < n-1, k++); dd^k == n-1;);} \\ Michel Marcus, Oct 11 2016

Extensions

a(9)-a(10) from Michel Marcus, Oct 11 2016