A277212 Expansion of Product_{n>=1} (1 - x^(5*n))/(1 - x^n)^5 in powers of x.
1, 5, 20, 65, 190, 505, 1260, 2970, 6700, 14535, 30520, 62235, 123720, 240340, 457380, 854190, 1568230, 2834120, 5048140, 8871450, 15396690, 26410860, 44811440, 75254240, 125162100, 206275505, 337032360, 546183425, 878270360, 1401857550, 2221862260
Offset: 0
Keywords
Examples
G.f.: 1 + 5*x + 20*x^2 + 65*x^3 + 190*x^4 + 505*x^5 + 1260*x^6 + ...
Links
- Robert Israel, Table of n, a(n) for n = 0..10000
- Eric Weisstein's World of Mathematics, q-Pochhammer Symbol
Crossrefs
Programs
-
Maple
N:= 100: # to get a(0)..a(N) S:= series(mul((1-x^(5*n))/(1-x^n)^5,n=1..N),x,N+1): seq(coeff(S,x,n),n=0..N); # Robert Israel, Nov 09 2016
-
Mathematica
nmax = 50; CoefficientList[Series[Product[(1 - x^(5*k))/(1 - x^k)^5, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 10 2016 *) (QPochhammer[x^5, x^5]/QPochhammer[x, x]^5 + O[x]^40)[[3]] (* Vladimir Reshetnikov, Nov 20 2016 *)
-
PARI
first(n)=my(x='x); Vec(prod(k=1, n, (1-x^(5*k))/(1-x^k)^5, 1+O(x^(n+1)))) \\ Charles R Greathouse IV, Nov 07 2016
-
PARI
x='x+O('x^66); Vec(eta(x^5)/eta(x)^5) \\ Joerg Arndt, Nov 27 2016
Formula
G.f.: Product_{n>=1} (1 - x^(5*n))/(1 - x^n)^5.
a(n) ~ exp(4*Pi*sqrt(n/5)) / (sqrt(2) * 5^(7/4) * n^(7/4)). - Vaclav Kotesovec, Nov 10 2016
G.f.: (x^5; x^5)inf/((x; x)_inf)^5, where (a; q)_inf is the q-Pochhammer symbol. - _Vladimir Reshetnikov, Nov 20 2016
a(0) = 1, a(n) = (5/n)*Sum_{k=1..n} A285896(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 29 2017
Comments