cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A182821 Expansion of g.f.: exp( Sum_{n>=1} sigma(5*n)*x^n/n ).

Original entry on oeis.org

1, 6, 27, 98, 315, 917, 2486, 6345, 15427, 35965, 80897, 176296, 373652, 772381, 1561130, 3091476, 6008896, 11480887, 21591830, 40016045, 73157052, 132052382, 235535752, 415433365, 725043875, 1252857043, 2144601961, 3638413830
Offset: 0

Views

Author

Paul D. Hanna, Dec 05 2010

Keywords

Comments

sigma(5*n) = A000203(5*n), the sum of divisors of 5n.
Compare g.f. to P(x), the g.f. of partition numbers (A000041): P(x) = exp( Sum_{n>=1} sigma(n)*x^n/n ).

Examples

			G.f.: A(x) = 1 + 6*x + 27*x^2 + 98*x^3 + 315*x^4 + 917*x^5 + ...
log(A(x)) = 6*x + 18*x^2/2 + 24*x^3/3 + 42*x^4/4 + 31*x^5/5 + 72*x^6/6 + 48*x^7/7 + 90*x^8/8 + ... + sigma(5n)*x^n/n + ...
		

Crossrefs

Cf. Product_{n>=1} (1 - x^(5*n))/(1 - x^n)^k: A035959 (k=1), A160461 (k=2), A277212 (k=5),
this sequence (k=6).

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&*[(1 - x^(5*j))/(1 - x^j)^6: j in [1..(m+2)]]) )); // G. C. Greubel, Nov 18 2018
    
  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1 - x^(5*k))/(1 - x^k)^6, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 28 2016 *)
  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n,sigma(5*m)*x^m/m)+x*O(x^n)),n)}
    
  • PARI
    default(seriesprecision,66); Vec(eta(x^5)/eta(x)^6) \\ Joerg Arndt, Dec 05 2010
    
  • PARI
    m=30; x='x+O('x^m); Vec(prod(j=1,m+2, (1 - x^(5*j))/(1 - x^j)^6)) \\ G. C. Greubel, Nov 18 2018
    
  • Sage
    R = PowerSeriesRing(ZZ, 'x')
    x = R.gen().O(30)
    s = prod((1 - x^(5*j))/(1 - x^j)^6 for j in (1..32))
    list(s) # G. C. Greubel, Nov 18 2018

Formula

G.f.: A(x) = E(x^5)/E(x)^6 where E(x) = Product_{k>=1} (1-x^k). - Joerg Arndt, Dec 05 2010
a(n) ~ 29^(3/2) * exp(sqrt(58*n/15)*Pi) / (2400*sqrt(3)*n^2). - Vaclav Kotesovec, Nov 28 2016
A(x^5) = P(x)*P(a*x)*P(a^2*x)*P(a^3*x)*P(a^4*x), where P(x) = 1/Product_{n>=1} (1 - x^n) is the g.f. for the partition function p(n) = A000041(n), and where a = exp(2*Pi*i/5) is a primitive fifth root of unity. - Peter Bala, Jan 24 2017

A109064 Expansion of eta(q)^5 / eta(q^5) in powers of q.

Original entry on oeis.org

1, -5, 5, 10, -15, -5, -10, 30, 25, -35, 5, -60, 30, 60, -30, 10, -55, 80, 35, -100, -15, -60, 60, 110, -50, -5, -60, 100, 90, -150, -10, -160, 105, 120, -80, 30, -105, 180, 100, -120, 25, -210, 60, 210, -180, -35, -110, 230, 110, -215, 5, -160, 180, 260
Offset: 0

Views

Author

Michael Somos, Jun 17 2005

Keywords

Comments

Number 12 of the 74 eta-quotients listed in Table I of Martin (1996).

Examples

			G.f. = 1 - 5*q + 5*q^2 + 10*q^3 - 15*q^4 - 5*q^5 - 10*q^6 + 30*q^7 + 25*q^8 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(5), 2), 54); A[1] - 5*A[2] + 5*A[3]; /* Michael Somos, May 19 2015 */
  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(add(d*
          `if`(irem(d, 5)=0, -4, -5), d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..70);  # Alois P. Heinz, Jan 07 2017
  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ q]^5 / QPochhammer[ q^5], {q, 0, n}]; (* Michael Somos, May 19 2015 *)
    a[ n_] := If[ n < 1, Boole[n == 0], -5 DivisorSum[ n, # KroneckerSymbol[ 5, #] &]]; (* Michael Somos, May 19 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^5 / eta(x^5 + A), n))};
    
  • PARI
    {a(n) = if( n<1, n==0, -5 * sumdiv(n, d, d * kronecker(5, d)))}; /* Michael Somos, May 19 2015 */
    

Formula

Euler transform of period 5 sequence [ -5, -5, -5, -5, -4, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = v^3 + 2 * u*v*w + u^2*w - 4 * u*w^2.
a(n) = -5 * b(n) where b() is multiplicative with a(0) = 1, b(p^e) = 1 if p=5, b(p^e) = b(p) * b(p^(e-1)) - Kronecker(5, p) * p * b(p^(e-2)) otherwise. - Michael Somos, May 19 2015
G.f. is a period 1 Fourier series which satisfies f(-1 / (5 t)) = 5^(5/2) (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A053723. - Michael Somos, May 19 2015
G.f.: Product_{k>0} (1 - x^k)^5 / (1 - x^(5*k)).
a(n) = -5 * A109091(n), unless n=0. a(n) = (-1)^n * A138506(n). a(5*n) = a(n).
a(0) = 1, a(n) = -(5/n)*Sum_{k=1..n} A285896(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 29 2017
Sum_{k=1..n} abs(a(k)) ~ c * n^2, where c = Pi^2/(3*sqrt(5)) = 1.471273... . - Amiram Eldar, Jan 29 2024

A160458 Coefficients in the expansion of C^2/B^10, in Watson's notation of page 106.

Original entry on oeis.org

1, 10, 65, 330, 1430, 5510, 19395, 63440, 195250, 570570, 1594315, 4283270, 11113440, 27949580, 68340360, 162880080, 379227010, 864153940, 1930443705, 4233724000, 9127235430, 19364099520, 40470110005, 83395632580, 169581447000, 340533848010
Offset: 0

Views

Author

N. J. A. Sloane, Nov 13 2009

Keywords

Examples

			G.f.: 1+10*q^24+65*q^48+330*q^72+1430*q^96+5510*q^120+19395*q^144+...
		

Crossrefs

Programs

  • Maple
    read format;
    M1:=1200:
    fm:=mul(1-x^n,n=1..M1):
    A:=x^(1/5)*subs(x=x^(24/5),fm):
    B:=x*subs(x=x^24,fm):
    C:=x^5*subs(x=x^120,fm):
    t1:=C^2/B^10;
    t2:=series(t1,x,M1);
    t3:=subs(x=y^(1/24),t2);
    t4:=series(t3,y,M1/24);
    t5:=seriestolist(t4); # A160458
  • PARI
    x='x+O('x^66); Vec((eta(x^5)/eta(x)^5)^2) \\ Joerg Arndt, Nov 27 2016

Formula

See Maple code for formula.
a(n) = Sum_{k=0..n} A277212(k)*A277212(n-k). - Seiichi Manyama, Nov 27 2016

A273845 Expansion of Product_{n>=1} (1 - x^(3*n))/(1 - x^n)^3 in powers of x.

Original entry on oeis.org

1, 3, 9, 21, 48, 99, 198, 375, 693, 1236, 2160, 3681, 6168, 10140, 16434, 26235, 41376, 64449, 99342, 151530, 229032, 343068, 509760, 751509, 1099998, 1598925, 2309274, 3314541, 4729920, 6711993, 9474624, 13306506, 18598437, 25874460, 35838288, 49427640, 67892592
Offset: 0

Views

Author

Seiichi Manyama, Nov 07 2016

Keywords

Examples

			G.f.: 1 + 3*x + 9*x^2 + 21*x^3 + 48*x^4 + 99*x^5 + 198*x^6 + ...
		

Crossrefs

Expansion of Product_{n>=1} (1 - x^(k*n))/(1 - x^n)^k in powers of x: A015128 (k=2), this sequence (k=3), A274327 (k=4), A277212 (k=5), A277283 (k=6), A160539 (k=7).

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1 - x^(3*k))/(1 - x^k)^3, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 10 2016 *)
    (QPochhammer[x^3, x^3]/QPochhammer[x, x]^3 + O[x]^40)[[3]] (* Vladimir Reshetnikov, Nov 20 2016 *)
  • PARI
    first(n)=my(x='x); Vec(prod(k=1, n, (1-x^(3*k))/(1-x^k)^3, 1+O(x^(n+1)))) \\ Charles R Greathouse IV, Nov 07 2016
    
  • PARI
    lista(nn) = {q='q+O('q^nn); Vec(eta(q^3)/eta(q)^3)} \\ Altug Alkan, Mar 20 2018

Formula

G.f.: Product_{n>=1} (1 - x^(3*n))/(1 - x^n)^3.
a(n) ~ exp(4*Pi*sqrt(n)/3) / (9*sqrt(2)*n^(5/4)). - Vaclav Kotesovec, Nov 10 2016
a(0) = 1, a(n) = (3/n)*Sum_{k=1..n} A078708(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 29 2017
It appears that the g.f. A(x) = F(x)^3, where F(x) = exp( Sum_{n >= 0} x^(3*n+1)/((3*n + 1)*(1 - x^(3*n+1))) + x^(3*n+2)/((3*n + 2)*(1 - x^(3*n + 2))) ). Cf. A132972. - Peter Bala, Dec 23 2021

A277974 Expansion of ((Product_{n>=1} (1 - x^(5*n))/(1 - x^n)^5) - 1)/5 in powers of x.

Original entry on oeis.org

0, 1, 4, 13, 38, 101, 252, 594, 1340, 2907, 6104, 12447, 24744, 48068, 91476, 170838, 313646, 566824, 1009628, 1774290, 3079338, 5282172, 8962288, 15050848, 25032420, 41255101, 67406472, 109236685, 175654072, 280371510, 444372452, 699579062, 1094289564
Offset: 0

Views

Author

Seiichi Manyama, Nov 07 2016

Keywords

Examples

			G.f. = x + 4*x^2 + 13*x^3 + 38*x^4 + 101*x^5 + 252*x^6 + ...
		

Crossrefs

Cf. Expansion of ((Product_{n>=1} (1 - x^(k*n))/(1 - x^n)^k) - 1)/k in powers of x: A014968 (k=2), A277968 (k=3), this sequence (k=5), A160549 (k=7), A277912 (k=11).

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[(Product[(1 - x^(5*j))/(1 - x^j)^5, {j, 1, nmax}] - 1)/5, {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 10 2016 *)
    a[ n_] := SeriesCoefficient[ (QPochhammer[ x^5] / QPochhammer[ x]^5 - 1) / 5, {x, 0, n}]; (* Michael Somos, Nov 13 2016 *)
  • PARI
    x='x+O('x^66); concat([0],Vec(eta(x^5)/eta(x)^5-1)/5) \\ Joerg Arndt, Nov 27 2016

Formula

a(n) = A277212(n)/5, n > 0.
G.f.: ((Product_{n>=1} (1 - x^(5*n))/(1 - x^n)^5) - 1)/5.
a(n) ~ exp(4*Pi*sqrt(n/5)) / (sqrt(2) * 5^(11/4) * n^(7/4)). - Vaclav Kotesovec, Nov 10 2016

A274327 Expansion of Product_{n>=1} (1 - x^(4*n))/(1 - x^n)^4 in powers of x.

Original entry on oeis.org

1, 4, 14, 40, 104, 248, 560, 1200, 2474, 4924, 9520, 17928, 33008, 59528, 105408, 183536, 314744, 532208, 888382, 1465208, 2389808, 3857456, 6166096, 9766576, 15336816, 23888844, 36924656, 56659296, 86341664, 130710104, 196640576, 294059872, 437232746, 646561792
Offset: 0

Views

Author

Seiichi Manyama, Nov 07 2016

Keywords

Examples

			G.f.: 1 + 4*x + 14*x^2 + 40*x^3 + 104*x^4 + 248*x^5 + 560*x^6 + ...
		

Crossrefs

Cf. Expansion of Product_{n>=1} (1 - x^(k*n))/(1 - x^n)^k in powers of x: A015128 (k=2), A273845 (k=3), this sequence (k=4), A277212 (k=5), A277283 (k=6), A160539 (k=7).
Cf. A083703.

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1 - x^(4*k))/(1 - x^k)^4, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 10 2016 *)
    (QPochhammer[x^4, x^4]/QPochhammer[x, x]^4 + O[x]^40)[[3]] (* Vladimir Reshetnikov, Nov 20 2016 *)
  • PARI
    first(n)=my(x='x);Vec(prod(k=1,n,(1-x^(4*k))/(1-x^k)^4,1+O(x^(n+1)))) \\ Charles R Greathouse IV, Nov 07 2016

Formula

G.f.: Product_{n>=1} (1 - x^(4*n))/(1 - x^n)^4.
a(n) ~ 5*exp(Pi*sqrt(5*n/2)) / (2^(13/2) * n^(3/2)). - Vaclav Kotesovec, Nov 10 2016
a(0) = 1, a(n) = (4/n)*Sum_{k=1..n} A285895(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 29 2017

A277283 Expansion of Product_{n>=1} (1 - x^(6*n))/(1 - x^n)^6 in powers of x.

Original entry on oeis.org

1, 6, 27, 98, 315, 918, 2491, 6366, 15498, 36182, 81501, 177876, 377558, 781626, 1582173, 3137832, 6108051, 11687598, 22012816, 40855674, 74799828, 135210868, 241511115, 426570624, 745516240, 1290006276, 2211202692, 3756468658, 6327617862, 10572763842
Offset: 0

Views

Author

Seiichi Manyama, Nov 07 2016

Keywords

Examples

			G.f.: 1 + 6*x + 27*x^2 + 98*x^3 + 315*x^4 + 918*x^5 + 2491*x^6 + ...
		

Crossrefs

Cf. Expansion of Product_{n>=1} (1 - x^(k*n))/(1 - x^n)^k in powers of x: A015128 (k=2), A273845 (k=3), A274327 (k=4), A277212 (k=5), this sequence (k=6), A160539 (k=7).

Programs

  • Mathematica
    (QPochhammer[x^6, x^6]/QPochhammer[x, x]^6 + O[x]^40)[[3]] (* Vladimir Reshetnikov, Nov 20 2016 *)
    nmax = 50; CoefficientList[Series[Product[(1 - x^(6*k))/(1 - x^k)^6, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 21 2016 *)
  • PARI
    first(n)=my(x='x); Vec(prod(k=1, n, (1-x^(6*k))/(1-x^k)^6, 1+O(x^(n+1)))) \\ Charles R Greathouse IV, Nov 07 2016

Formula

G.f.: Product_{n>=1} (1 - x^(6*n))/(1 - x^n)^6.
a(n) ~ 35*sqrt(35) * exp(sqrt(35*n)*Pi/3) / (3456*sqrt(3)*n^2). - Vaclav Kotesovec, Nov 21 2016

A160459 Omit first term of A160458 and divide by 5.

Original entry on oeis.org

2, 13, 66, 286, 1102, 3879, 12688, 39050, 114114, 318863, 856654, 2222688, 5589916, 13668072, 32576016, 75845402, 172830788, 386088741, 846744800, 1825447086, 3872819904, 8094022001, 16679126516, 33916289400, 68106769602, 135148379654, 265177195950
Offset: 1

Views

Author

N. J. A. Sloane, Nov 13 2009

Keywords

Crossrefs

Programs

  • PARI
    x='x+O('x^66); v=Vec((eta(x^5)/eta(x)^5)^2); vector(#v-1,j,v[j+1]/5) \\ Joerg Arndt, Nov 27 2016~

Formula

a(n) = 1/5 * A160458(n) = 1/5 * Sum_{k=0..n} A277212(k)*A277212(n-k) = 2 * A277974(n) + 5 * Sum_{k=1..n-1} A277974(k)*A277974(n-k). - Seiichi Manyama, Nov 27 2016

A278668 Expansion of Product_{n>=1} (1 - x^(5*n))/(1 - x^n)^3 in powers of x.

Original entry on oeis.org

1, 3, 9, 22, 51, 107, 218, 420, 788, 1428, 2531, 4375, 7430, 12377, 20313, 32833, 52402, 82585, 128750, 198588, 303428, 459375, 689710, 1027243, 1518709, 2229375, 3251022, 4710777, 6785378, 9717677, 13841991, 19614182, 27656250, 38810312, 54216128, 75406438
Offset: 0

Views

Author

Seiichi Manyama, Nov 25 2016

Keywords

Examples

			G.f.: 1 + 3*x + 9*x^2 + 22*x^3 + 51*x^4 + 107*x^5 + 218*x^6 + ...
		

Crossrefs

Cf. Product_{n>=1} (1 - x^(5*n))/(1 - x^n)^k: A035959 (k=1), A160461 (k=2), this sequence (k=3), A278680 (k=4), A277212 (k=5), A182821 (k=6).

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Product[(1 - x^(5*k))/(1 - x^k)^3, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 10 2017 *)

Formula

G.f.: Product_{n>=1} (1 - x^(5*n))/(1 - x^n)^3.
a(n) ~ exp(2*Pi*sqrt(7*n/15)) * 7^(3/4) / (20 * 3^(3/4) * 5^(1/4) * n^(5/4)). - Vaclav Kotesovec, Nov 10 2017

A278680 Expansion of Product_{n>=1} (1 - x^(5*n))/(1 - x^n)^4 in powers of x.

Original entry on oeis.org

1, 4, 14, 40, 105, 251, 570, 1226, 2540, 5075, 9855, 18630, 34439, 62340, 110805, 193624, 333235, 565415, 947040, 1567130, 2564425, 4152535, 6658711, 10579380, 16663755, 26033200, 40357641, 62106290, 94912385, 144088840, 217368655, 325945320, 485950150, 720515475
Offset: 0

Views

Author

Seiichi Manyama, Nov 25 2016

Keywords

Examples

			G.f.: 1 + 4*x + 14*x^2 + 40*x^3 + 105*x^4 + 251*x^5 + 570*x^6 + ...
		

Crossrefs

Cf. Product_{n>=1} (1 - x^(5*n))/(1 - x^n)^k: A035959 (k=1), A160461 (k=2), A278668 (k=3), this sequence (k=4), A277212 (k=5), A182821 (k=6).

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Product[(1 - x^(5*k))/(1 - x^k)^4, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 10 2017 *)

Formula

G.f.: Product_{n>=1} (1 - x^(5*n))/(1 - x^n)^4.
a(n) ~ 19 * exp(Pi*sqrt(38*n/15)) / (120 * sqrt(10) * n^(3/2)). - Vaclav Kotesovec, Nov 10 2017
Showing 1-10 of 10 results.