A277217 Numbers k for which the sum of digits of sigma(k) = the product of digits of sigma(k).
1, 2, 3, 4, 5, 7, 86, 126, 131, 206, 207, 311, 1123, 1213, 2113, 4111, 10921, 12211, 16581, 21121, 21211, 22111, 39660, 51558, 52940, 60812, 61504, 63548, 68822, 81303, 83409, 87081, 87451, 89708, 94523, 97307, 106118, 108527, 110387, 111611, 120831, 160271
Offset: 1
Examples
86 is a term because sigma(86) = 132; sum and product of digits of 132 = 6.
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..196 (first 100 terms from Jaroslav Krizek)
Crossrefs
Programs
-
Magma
[n: n in [1..100000] | &+Intseq(SumOfDivisors(n)) eq &*Intseq(SumOfDivisors(n))];
-
Mathematica
Select[Range@ 200000, Total@ # == Times @@ # &@ IntegerDigits@ DivisorSigma[1, #] &] (* Michael De Vlieger, Oct 06 2016 *)
-
PARI
isok(n) = my(d=digits(sigma(n))); vecprod(d) == vecsum(d); \\ Michel Marcus, Mar 02 2019
Comments