cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277217 Numbers k for which the sum of digits of sigma(k) = the product of digits of sigma(k).

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 86, 126, 131, 206, 207, 311, 1123, 1213, 2113, 4111, 10921, 12211, 16581, 21121, 21211, 22111, 39660, 51558, 52940, 60812, 61504, 63548, 68822, 81303, 83409, 87081, 87451, 89708, 94523, 97307, 106118, 108527, 110387, 111611, 120831, 160271
Offset: 1

Views

Author

Jaroslav Krizek, Oct 05 2016

Keywords

Comments

Numbers k such that A067342(k) = A277216(k).
Prime terms: 2, 3, 5, 7, 131, 311, 1123, 1213, 2113, 4111, 12211, ...
Corresponding values of sigma(a(n)): 1, 3, 4, 7, 6, 8, 132, 312, 132, 312, 312, 312, 1124, 1214, 2114, ...
Only 196 terms less than 35*10^8. - Robert G. Wilson v, Oct 07 2016
Alternatively, numbers k such that sigma(k) is in A034710. - Charlie Neder, Dec 27 2018

Examples

			86 is a term because sigma(86) = 132; sum and product of digits of 132 = 6.
		

Crossrefs

Cf. A067342 (sum of decimal digits of sigma(n)), A277216 (product of decimal digits of sigma(n)).

Programs

  • Magma
    [n: n in [1..100000] | &+Intseq(SumOfDivisors(n)) eq &*Intseq(SumOfDivisors(n))];
    
  • Mathematica
    Select[Range@ 200000, Total@ # == Times @@ # &@ IntegerDigits@ DivisorSigma[1, #] &] (* Michael De Vlieger, Oct 06 2016 *)
  • PARI
    isok(n) = my(d=digits(sigma(n))); vecprod(d) == vecsum(d); \\ Michel Marcus, Mar 02 2019