cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277219 Triangle read by rows: T(n,k) is the number of independent sets of size k over all simple labeled graphs on n nodes, n>=0, 0<=k<=n.

Original entry on oeis.org

1, 1, 1, 2, 4, 1, 8, 24, 12, 1, 64, 256, 192, 32, 1, 1024, 5120, 5120, 1280, 80, 1, 32768, 196608, 245760, 81920, 7680, 192, 1, 2097152, 14680064, 22020096, 9175040, 1146880, 43008, 448, 1, 268435456, 2147483648, 3758096384, 1879048192, 293601280, 14680064, 229376, 1024, 1
Offset: 0

Views

Author

Geoffrey Critzer, Oct 05 2016

Keywords

Comments

Equivalently, T(n,k) is the number of size k cliques over all simple labeled graphs on n vertices.

Examples

			Triangle begins:
1;
1,     1;
2,     4,      1;
8,     24,     12,     1;
64,    256,    192,    32,    1;
1024,  5120,   5120,   1280,  80,   1;
32768, 196608, 245760, 81920, 7680, 192, 1;
...
		

Crossrefs

Cf. A079491 (row sums), A006125 (column k=0), A095340 (column k=1), A095351 (column k = 2).

Programs

  • Maple
    seq(seq(2^(n*(n-1)/2-k*(k-1)/2)*binomial(n,k),k=0..n),n=0..10); # Robert Israel, Oct 06 2016
  • Mathematica
    Table[Table[2^Binomial[n, 2] Binomial[n, k]/2^Binomial[k, 2], {k, 0, n}], {n,0, 7}] // Grid

Formula

T(n,k) = 2^binomial(n,2)*binomial(n,k)/2^binomial(k,2).