A117260 Triangle T, read by rows, where matrix inverse T^-1 has -2^n in the secondary diagonal: [T^-1](n+1,n) = -2^n, with all 1's in the main diagonal and zeros elsewhere.
1, 1, 1, 2, 2, 1, 8, 8, 4, 1, 64, 64, 32, 8, 1, 1024, 1024, 512, 128, 16, 1, 32768, 32768, 16384, 4096, 512, 32, 1, 2097152, 2097152, 1048576, 262144, 32768, 2048, 64, 1, 268435456, 268435456, 134217728, 33554432, 4194304, 262144, 8192, 128, 1
Offset: 0
Examples
Triangle T begins: 1; 1,1; 2,2,1; 8,8,4,1; 64,64,32,8,1; 1024,1024,512,128,16,1; 32768,32768,16384,4096,512,32,1; 2097152,2097152,1048576,262144,32768,2048,64,1; 268435456,268435456,134217728,33554432,4194304,262144,8192,128,1; Matrix inverse T^-1 has -2^n in the 2nd diagonal: 1, -1,1, 0,-2,1, 0,0,-4,1, 0,0,0,-8,1, 0,0,0,0,-16,1, 0,0,0,0,0,-32,1, ...
Crossrefs
Programs
-
Maple
T := (n, k) -> 2^(((n + k - 1)*(n - k))/2): seq(seq(T(n, k), k = 0..n), n = 0..8); # Peter Luschny, Dec 31 2024
-
Mathematica
Flatten[Table[2^((n(n-1))/2-(k(k-1))/2),{n,0,10},{k,0,n}]] (* Harvey P. Dale, Sep 19 2013 *)
-
PARI
{T(n,k)=local(m=1,p=-1,q=2,r=1);prod(j=0,n-k-1,m*r-p*j)/(n-k)!*q^((n-k)*(n+k-1)/2)}
Formula
T(n,k) = 2^(n*(n-1)/2 - k*(k-1)/2).
Comments