cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A071245 a(n) = n*(n-1)*(2*n^2 + 1)/6.

Original entry on oeis.org

0, 0, 3, 19, 66, 170, 365, 693, 1204, 1956, 3015, 4455, 6358, 8814, 11921, 15785, 20520, 26248, 33099, 41211, 50730, 61810, 74613, 89309, 106076, 125100, 146575, 170703, 197694, 227766, 261145, 298065, 338768, 383504, 432531, 486115, 544530, 608058
Offset: 0

Views

Author

N. J. A. Sloane, Jun 12 2002

Keywords

Comments

The first differences are given in A277228. - J. M. Bergot, Sep 14 2016

References

  • T. A. Gulliver, Sequences from Arrays of Integers, Int. Math. Journal, Vol. 1, No. 4, pp. 323-332, 2002.

Crossrefs

Cf. A071238, A071244, A277228 (first differences).

Programs

  • Magma
    [n*(n-1)*(2*n^2+1)/6: n in [0..40]]; // Vincenzo Librandi, Jun 14 2011
    
  • Mathematica
    Table[n (n - 1) (2 n^2 + 1)/6, {n, 0, 37}] (* or *)
    CoefficientList[Series[(-3 x^2 - 4 x^3 - x^4)/(-1 + x)^5, {x, 0, 37}], x] (* Michael De Vlieger, Sep 14 2016 *)
  • PARI
    a(n)=n*(n-1)*(2*n^2+1)/6; \\ Joerg Arndt, Sep 04 2013
    
  • SageMath
    def A071245(n): return binomial(n,2)*(2*n^2+1)//3
    [A071245(n) for n in range(41)] # G. C. Greubel, Aug 07 2024

Formula

a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n > 4; a(0)=0, a(1)=0, a(2)=3, a(3)=19, a(4)=66. - Yosu Yurramendi, Sep 03 2013
G.f.: x^2*(3 + 4*x + x^2)/(1-x)^5. - Michael De Vlieger, Sep 14 2016
E.g.f.: (1/6)*x^2*(9 + 10*x + 2*x^2)*exp(x). - G. C. Greubel, Sep 23 2016
Showing 1-1 of 1 results.