A277229 Convolution of the odd-indexed triangular numbers (A000384(n+1)) and the squares (A000290).
0, 1, 10, 48, 158, 413, 924, 1848, 3396, 5841, 9526, 14872, 22386, 32669, 46424, 64464, 87720, 117249, 154242, 200032, 256102, 324093, 405812, 503240, 618540, 754065, 912366, 1096200, 1308538, 1552573, 1831728, 2149664, 2510288, 2917761, 3376506, 3891216
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
Programs
-
Mathematica
Table[n (n + 1) (n + 2) (4 n^2 + 3 n + 3)/60, {n, 0, 40}] (* Bruno Berselli, Oct 21 2016 *)
-
PARI
concat(0, Vec(x*((1+x)*(1+3*x))/(1-x)^6 + O(x^50))) \\ Colin Barker, Oct 21 2016
Formula
O.g.f.: x*(1 + x)*(1 + 3*x)/(1 - x)^6 = ((1 + 3*x)/(1 - x)^3)*(x*(1 + x)/(1 - x)^3).
a(n) = binomial(n+2, 3)*(4*n^2 + 3*n + 3)/10 = n*(n + 1)*(n + 2)*(4*n^2 + 3*n + 3)/60.
a(n) = Sum_{k=0..n} A071238(k).
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>5. - Colin Barker, Oct 21 2016
Comments