cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277229 Convolution of the odd-indexed triangular numbers (A000384(n+1)) and the squares (A000290).

Original entry on oeis.org

0, 1, 10, 48, 158, 413, 924, 1848, 3396, 5841, 9526, 14872, 22386, 32669, 46424, 64464, 87720, 117249, 154242, 200032, 256102, 324093, 405812, 503240, 618540, 754065, 912366, 1096200, 1308538, 1552573, 1831728, 2149664, 2510288, 2917761, 3376506, 3891216
Offset: 0

Views

Author

Wolfdieter Lang, Oct 20 2016

Keywords

Comments

This sequence was originally proposed in a comment on A071238 by J. M. Bergot as giving the first differences. Therefore, a(n) gives the partial sums of A071238.

Crossrefs

Programs

  • Mathematica
    Table[n (n + 1) (n + 2) (4 n^2 + 3 n + 3)/60, {n, 0, 40}] (* Bruno Berselli, Oct 21 2016 *)
  • PARI
    concat(0, Vec(x*((1+x)*(1+3*x))/(1-x)^6 + O(x^50))) \\ Colin Barker, Oct 21 2016

Formula

O.g.f.: x*(1 + x)*(1 + 3*x)/(1 - x)^6 = ((1 + 3*x)/(1 - x)^3)*(x*(1 + x)/(1 - x)^3).
a(n) = Sum_{k=0..n} A000384(n+1-k)*A000290(k).
a(n) = binomial(n+2, 3)*(4*n^2 + 3*n + 3)/10 = n*(n + 1)*(n + 2)*(4*n^2 + 3*n + 3)/60.
a(n) = Sum_{k=0..n} A071238(k).
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>5. - Colin Barker, Oct 21 2016