cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277232 Numerators of the partial sums of the cubes of the expansion coefficients of 1/sqrt(1-x).

Original entry on oeis.org

1, 9, 603, 4949, 2576763, 20864151, 1347632055, 10860010029, 44749069441659, 359788384157147, 23124997294306677, 185685617347012755, 95380005326947177879, 765237422887515344907, 49101291379356533433423, 393721549706169405868509, 12928613856208967961607217787
Offset: 0

Views

Author

Wolfdieter Lang, Nov 11 2016

Keywords

Comments

The denominators seem to coincide with A241756.
These are the partial sums of F. Morley's series Sum_{k>=0} (risefac(m,k)/k!)^3 for m=1/2, where risefac(x,k) = Product_{j=0..k-1} (x+j), and risefac(x,0) = 1. See the Hardy reference, pp. 104, 111.
The Morley formula gives the value of this series for |m| < 2/3 as Gamma(1-3*m/2)/(Gamma(1-m/2)^3)*cos(Pi*m/2). For the present case m=1/2 this value is hypergeometric([1/2,1/2,1/2],[1,1],1) = Pi/Gamma(3/4)^4 given in A091670.

Examples

			The rationals r(n) begin: 1, 9/8, 603/512, 4949/4096, 2576763/2097152, 20864151/16777216, 1347632055/1073741824, ...
The limit is given in A091670, approximately 1.3932039296856768591...
		

References

  • G. H. Hardy, Ramanujan, AMS Chelsea Publ., Providence, RI, 2002, p. 104.

Crossrefs

Formula

a(n) = numerator(r(n)) with the rational r(n) = Sum_{k=0..n} (risefac(1/2,k)/k!)^3 = Sum_{k=0..n} (-1)^k*(binomial(-1/2,k))^3 = Sum_{k=0..n} ((2*k-1)!!/(2*k)!!)^3. The rising factorial has been defined in a comment above. The double factorials are given in A001147 and A000165 with (-1)!! := 1.