A277233 Numerators of the partial sums of the squares of the expansion coefficients of 1/sqrt(1-x). Also the numerators of the Landau constants.
1, 5, 89, 381, 25609, 106405, 1755841, 7207405, 1886504905, 7693763645, 125233642041, 508710104205, 33014475398641, 133748096600189, 2165115508033649, 8754452051708621, 9054883309760265929, 36559890613417481741, 590105629859261338481, 2379942639329101454549
Offset: 0
Examples
The rationals r(n) begin: 1, 5/4, 89/64, 381/256, 25609/16384, 106405/65536, 1755841/1048576, 7207405/4194304, 1886504905/1073741824, 7693763645/4294967296, ...
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..831
- Edmund Landau, Abschätzung der Koeffzientensumme einer Potenzreihe, Arch. Math. Phys. 21 (1913), 42-50. [Accessible in the USA through the Hathi Trust Digital Library.]
- Edmund Landau, Abschätzung der Koeffzientensumme einer Potenzreihe (Zweite Abhandlung), Arch. Math. Phys. 21 (1913), 250-255. [Accessible in the USA through the Hathi Trust Digital Library.]
- Cristinel Mortici, Sharp bounds of the Landau constants, Math. Comp. 80 (2011), pp. 1011-1018.
- G. N. Watson, The constants of Landau and Lebesgue, Quart. J. Math. Oxford Ser. 1:2 (1930), pp. 310-318.
Programs
-
Maple
a := n -> numer(add(binomial(-1/2, j)^2, j=0..n)); seq(a(n), n=0..19); # Peter Luschny, Sep 26 2019 # Alternatively: G := proc(x) hypergeom([1/2,1/2], [1], x)/(1-x) end: ser := series(G(x), x, 20): [seq(coeff(ser,x,n), n=0..19)]: numer(%); # Peter Luschny, Sep 28 2019
-
Mathematica
Accumulate[CoefficientList[Series[1/Sqrt[1-x],{x,0,20}],x]^2]//Numerator (* Harvey P. Dale, Feb 10 2019 *) G[x_] := (2 EllipticK[x])/(Pi (1 - x)); CoefficientList[Series[G[x], {x, 0, 19}], x] // Numerator (* Peter Luschny, Sep 28 2019 *)
-
SageMath
def A277233(n): return sum((A001790(k)*(2^(A005187(n) - A005187(k))))^2 for k in (0..n)) print([A277233(n) for n in (0..19)]) # Peter Luschny, Sep 30 2019
Formula
a(n) = numerator(r(n)), with the fractional
r(n) = Sum_{k=0..n} (risefac(1/2,k)/k!)^2;
r(n) = Sum_{k=0..n} (binomial(-1/2,k))^2;
r(n) = Sum_{k=0..n} ((2*k-1)!!/(2*k)!!)^2.
The rising factorial has been defined in a comment above. The double factorials are given in A001147 and A000165 with (-1)!! := 1.
r(n) ~ (log(n+3/4) + EulerGamma + 4*log(2))/Pi. - Peter Luschny, Sep 27 2019
Rational generating function: (2*K(x))/(Pi*(1-x)) where K is the complete elliptic integral of the first kind. - Peter Luschny, Sep 28 2019
Comments