A277239 Number A(n,k) of factorizations of m^n into exactly k factors, where m is a product of two distinct primes; square array A(n,k), n>=0, k>=0, read by antidiagonals.
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 2, 5, 1, 0, 1, 2, 8, 8, 1, 0, 1, 2, 9, 19, 13, 1, 0, 1, 2, 9, 27, 42, 18, 1, 0, 1, 2, 9, 30, 74, 78, 25, 1, 0, 1, 2, 9, 31, 95, 168, 139, 32, 1, 0, 1, 2, 9, 31, 105, 248, 363, 224, 41, 1, 0, 1, 2, 9, 31, 108, 300, 614, 703, 350, 50, 1, 0
Offset: 0
Examples
Square array A(n,k) begins: 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 0, 1, 2, 2, 2, 2, 2, 2, 2, ... 0, 1, 5, 8, 9, 9, 9, 9, 9, ... 0, 1, 8, 19, 27, 30, 31, 31, 31, ... 0, 1, 13, 42, 74, 95, 105, 108, 109, ... 0, 1, 18, 78, 168, 248, 300, 325, 335, ... 0, 1, 25, 139, 363, 614, 814, 938, 1002, ... 0, 1, 32, 224, 703, 1367, 1996, 2457, 2741, ... 0, 1, 41, 350, 1297, 2879, 4642, 6128, 7168, ...
Links
- Alois P. Heinz, Antidiagonals n = 0..45, flattened