cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A002774 Number of bipartite partitions of n white objects and n black ones.

Original entry on oeis.org

1, 2, 9, 31, 109, 339, 1043, 2998, 8406, 22652, 59521, 151958, 379693, 927622, 2224235, 5236586, 12130780, 27669593, 62229990, 138095696, 302673029, 655627975, 1404599867, 2977831389, 6251060785, 12999299705, 26791990052, 54750235190, 110977389012
Offset: 0

Views

Author

Keywords

Comments

Number of ways to factor p^n * q^n where p and q are distinct primes.

References

  • M. S. Cheema and H. Gupta, Tables of Partitions of Gaussian Integers. National Institute of Sciences of India, Mathematical Tables, Vol. 1, New Delhi, 1956, p. 1.
  • D. E. Knuth, The Art of Computer Programming, Vol. 4A, Table A-1, see p(n,n), page 778. - N. J. A. Sloane, Dec 30 2018
  • A. Murthy, Generalization of partition function, introducing Smarandache factor partitions. Smarandache Notions Journal, Vol. 11, No. 1-2-3, Spring 2000.
  • A. Murthy, Program for finding out the number of Smarandache factor partitions. (To be published in Smarandache Notions Journal).
  • Amarnath Murthy and Charles Ashbacher, Generalized Partitions and Some New Ideas on Number Theory and Smarandache Sequences, Hexis, Phoenix; USA 2005. See Section 1.4, 1.14.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A005380.
Cf. A219554. Column k=2 of A219727. - Alois P. Heinz, Nov 26 2012
Main diagonal of A054225 if that entry is drawn as a square array. - N. J. A. Sloane, Dec 30 2018

Programs

  • Maple
    with(numtheory):
    b:= proc(n, k) option remember; `if`(n>k, 0, 1) +`if`(isprime(n), 0,
          add(`if`(d>k, 0, b(n/d, d)), d=divisors(n) minus {1, n}))
        end:
    a:= n-> b(6^n$2):
    seq(a(n), n=0..30);  # Alois P. Heinz, Jun 27 2013
  • Mathematica
    max = 26; se = Series[ Sum[ Log[1 - x^(n-k)*y^k], {n, 1, 2max}, {k, 0, n}], {x, 0, 2max}, {y, 0, 2max}]; coes = CoefficientList[ Series[ Exp[-se], {x, 0, 2max}, {y, 0, 2max}], {x, y}]; a[n_] := coes[[n+1, n+1]]; Table[a[n], {n, 0, max} ](* Jean-François Alcover, Dec 06 2011 *)

Formula

a(n) = A054225(2n, n) = A091437(2n).
a(n) ~ Zeta(3)^(19/36) * exp(3*Zeta(3)^(1/3) * n^(2/3) + Pi^2 * n^(1/3) / (6*Zeta(3)^(1/3)) + Zeta'(-1) - Pi^4/(432*Zeta(3))) / (sqrt(3) * (2*Pi)^(3/2) * n^(55/36)). - Vaclav Kotesovec, Jan 30 2016
Formula (25) in the article by Auluck is incorrect. The correct formula is: p(n,n) ~ c^(19/12) * exp(3*c*n^(2/3) + 3*d*n^(1/3) + Zeta'(-1) - 3*d^2/(4*c)) / (sqrt(3) * (2*Pi)^(3/2) * n^(55/36)), where c = Zeta(3)^(1/3), d = Zeta(2)/(3*c). Also formula (24) is incorrect. - Vaclav Kotesovec, Jan 30 2016
From Vaclav Kotesovec, Feb 04 2016: (Start)
The correct formula (24) is p(m,n) ~ c^(7/4)/(2*Pi*sqrt(3)) * exp(3*c*(m*n)^(1/3) + 3*d*(m+n)/(2*(m*n)^(1/3)) - 19*log(m*n)/24 - ((m/n - 2*n/m)*log(m) + (n/m - 2*m/n)*log(n))/36 - (m/n + n/m)*(log(c)/12 + Zeta'(-1) - 1/12 + 3*d^2/(4*c)) + 3*d^2/(4*c) - 3*log(2*Pi)/4 + fi((n/m)^(1/2))),
where m and n are of the same order, c = Zeta(3)^(1/3), d = Zeta(2)/(3*c) and fi(alfa) = Integral_{t=0..infinity} (1/t)*(1/(exp(alfa*t)-1)/(exp(t/alfa)-1) - (alfa/t)/(exp(alfa*t)-1) - ((1/alfa)/t)/(exp(t/alfa)-1) + 1/t^2 + (1/4)/(exp(alfa*t)-1) + (1/4)/(exp(t/alfa)-1) - (alfa/4)/t - ((1/4)/alfa)/t).
If m = n then alfa = 1 and fi(1) = 3*Zeta'(-1) + log(2*Pi)/4 - 1/6.
For the asymptotic formula for fixed m see A054225.
(End)

Extensions

Corrected using A000491.
Edited by Christian G. Bower, Jan 08 2004

A101427 Number of different cuboids with volume (pq)^n, where p,q are distinct prime numbers.

Original entry on oeis.org

1, 2, 8, 19, 42, 78, 139, 224, 350, 517, 744, 1032, 1405, 1862, 2432, 3115, 3942, 4914, 6067, 7400, 8954, 10729, 12768, 15072, 17689, 20618, 23912, 27571, 31650, 36150, 41131, 46592, 52598, 59149, 66312, 74088, 82549, 91694, 101600, 112267, 123774
Offset: 0

Views

Author

Anthony C Robin, Jan 17 2005

Keywords

Comments

Subsequence of A034836, which gives the number of cuboids for volume n.

Crossrefs

Column k=3 of A277239.

Programs

  • Mathematica
    a[n_] := Switch[Mod[n, 6], 0, n+1, 1|5, 3n/4 + 7/24, 2|4, n+2/3, 3, 3n/4 + 5/8] + n^4/24 + n^3/4 + 2n^2/3; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Oct 06 2016, after Frederic Solbes' formula *)
  • PARI
    a(n) = if (n % 3, ((n+2)^2*(n+1)^2 + 12*(n\2+1)^2)/24, ((n+2)^2*(n+1)^2 + 12*(n\2+1)^2+8)/24); \\ Michel Marcus, Mar 18 2014

Formula

If n is a multiple of 3, a(n) = ((n+2)^2*(n+1)^2 + 12*(floor(n/2)+1)^2+8)/24, otherwise a(n) = ((n+2)^2*(n+1)^2 + 12*(floor(n/2)+1)^2)/24. - Frederic Solbes, Mar 18 2014
G.f.: -(x^6+3*x^4+4*x^3+3*x^2+1)/((x^2+x+1)*(x+1)^2*(x-1)^5). - Colin Barker, Mar 27 2014
From Daniel Mondot, Sep 20 2016: (Start)
a(n) = a(n-1) + 2*a(n-2) - a(n-3) - 2*a(n-4) - a(n-5) + 2*a(n-6) + a(n-7) - a(n-8) + 12, n>=8.
a(n) = 4*a(n-6) - 6*a(n-12) + 4*a(n-18) - a(n-24) + 1296, n>=24. (End)

Extensions

Extended by Ray Chandler, Dec 17 2008
Edited by Ray Chandler, Dec 19 2008
a(0) = 1 prepended by Daniel Mondot, Sep 20 2016

A254686 Number of ways to put n red and n blue balls into n indistinguishable boxes.

Original entry on oeis.org

1, 1, 5, 19, 74, 248, 814, 2457, 7168, 19928, 53688, 139820, 354987, 878434, 2128102, 5052010, 11781881, 27019758, 61035671, 135928105, 298784144, 648726349, 1392474574, 2956730910, 6214668074, 12937060340, 26686392239, 54572423946, 110680119454, 222710856175, 444776676764
Offset: 0

Views

Author

Brian Chen, Feb 08 2015

Keywords

Comments

See a comment on A254811 about multiset partitions and the Knuth reference. - Wolfdieter Lang, Mar 26 2015

Examples

			For n = 2 the a(2) = 5 ways to put 2 red balls and 2 blue balls into 2 indistinguishable boxes are (RRBB)(), (RRB)(B), (RBB)(R), (RR)(BB), (RB)(RB).
		

Crossrefs

Column k=2 of A256384.
Main diagonal of A277239.

Programs

  • Maple
    with(numtheory):
    b:= proc(n, k, i) option remember;
          `if`(n>k, 0, 1) +`if`(isprime(n) or i<2, 0, add(
          `if`(d>k, 0, b(n/d, d, i-1)), d=divisors(n) minus {1, n}))
        end:
    a:= n-> b(6^n$2,n):
    seq(a(n), n=0..20);  # Alois P. Heinz, Mar 26 2015
  • Mathematica
    b[n_, k_, i_] := b[n, k, i] = If[n > k, 0, 1] + If[PrimeQ[n] || i < 2, 0, Sum[If[d > k, 0, b[n/d, d, i - 1]], {d, Divisors[n] [[2 ;; -2]]}]]; a[n_] := b[6^n, 6^n, n]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jan 08 2016, after Alois P. Heinz *)

A277240 Number of factorizations of m^n into exactly four factors, where m is a product of two distinct primes.

Original entry on oeis.org

1, 2, 9, 27, 74, 168, 363, 703, 1297, 2247, 3742, 5967, 9241, 13859, 20307, 29052, 40786, 56187, 76233, 101858, 134377, 175068, 225640, 287772, 363673, 455482, 565977, 697875, 854594, 1039500, 1256787, 1510547, 1805833, 2147607, 2541870, 2994543, 3512737
Offset: 0

Views

Author

Alois P. Heinz, Oct 06 2016

Keywords

Examples

			a(2) = 9: (2*3)^2 = 2*2*3*3 = 1*3*3*4 = 1*2*3*6 = 1*2*2*9 = 1*1*4*9 = 1*1*6*6 = 1*1*2*18 = 1*1*3*12 = 1*1*1*36.
		

Crossrefs

Column k=4 of A277239.

Programs

  • Mathematica
    LinearRecurrence[{2,1,-2,-2,-2,5,2,0,-2,-5,2,2,2,-1,-2,1},{1,2,9,27,74,168,363,703,1297,2247,3742,5967,9241,13859,20307,29052},40] (* Harvey P. Dale, May 21 2024 *)

Formula

G.f.: -(x^12 +4*x^10 +9*x^9 +17*x^8 +17*x^7 +24*x^6 +17*x^5 +17*x^4 +9*x^3 +4*x^2 +1) / ((x^2+1) *(x^2+x+1)^2 *(x+1)^3 *(x-1)^7).

A277241 Number of factorizations of m^n into exactly five factors, where m is a product of two distinct primes.

Original entry on oeis.org

1, 2, 9, 30, 95, 248, 614, 1367, 2879, 5674, 10681, 19169, 33203, 55478, 90067, 142224, 219388, 330943, 489716, 711518, 1017241, 1432328, 1989400, 2727644, 3696314, 4953733, 6571851, 8635136, 11245971, 14523411, 18610003, 23669939, 29897469, 37514880, 46782198
Offset: 0

Views

Author

Alois P. Heinz, Oct 06 2016

Keywords

Crossrefs

Column k=5 of A277239.

A277242 Number of factorizations of m^n into exactly six factors, where m is a product of two distinct primes.

Original entry on oeis.org

1, 2, 9, 31, 105, 300, 814, 1996, 4642, 10105, 20975, 41455, 78849, 144371, 256079, 440704, 738772, 1208149, 1932864, 3029214, 4660063, 7045203, 10483231, 15368227, 22222681, 31722589, 44745412, 62407716, 86132422, 117703074, 159357465, 213863183, 284644763
Offset: 0

Views

Author

Alois P. Heinz, Oct 06 2016

Keywords

Crossrefs

Column k=6 of A277239.

A277243 Number of factorizations of m^n into exactly seven factors, where m is a product of two distinct primes.

Original entry on oeis.org

1, 2, 9, 31, 108, 325, 938, 2457, 6128, 14358, 32123, 68488, 140478, 277278, 529624, 980476, 1765492, 3097071, 5306548, 8893500, 14607217, 23542097, 37285849, 58094004, 89148980, 134862913, 201312513, 296746270, 432288197, 622756805, 887772827, 1253040268
Offset: 0

Views

Author

Alois P. Heinz, Oct 06 2016

Keywords

Crossrefs

Column k=7 of A277239.

A277244 Number of factorizations of m^n into exactly eight factors, where m is a product of two distinct primes.

Original entry on oeis.org

1, 2, 9, 31, 109, 335, 1002, 2741, 7168, 17685, 41801, 94377, 205277, 430087, 872302, 1714941, 3278477, 6103521, 11091375, 19700943, 34265319, 58429093, 97816791, 160944051, 260558245, 415434960, 652940560, 1012418264, 1549884617, 2344153951, 3505141354
Offset: 0

Views

Author

Alois P. Heinz, Oct 06 2016

Keywords

Crossrefs

Column k=8 of A277239.

A277245 Number of factorizations of m^n into exactly nine factors, where m is a product of two distinct primes.

Original entry on oeis.org

1, 2, 9, 31, 109, 338, 1029, 2889, 7797, 19928, 48965, 115275, 262034, 574803, 1222170, 2521350, 5060938, 9896451, 18891871, 35249977, 64390786, 115284416, 202560300, 349637130, 593499173, 991625986, 1632248998, 2648936320, 4241607523, 6705867270, 10474314965
Offset: 0

Views

Author

Alois P. Heinz, Oct 06 2016

Keywords

Crossrefs

Column k=9 of A277239.

A277246 Number of factorizations of m^n into exactly ten factors, where m is a product of two distinct primes.

Original entry on oeis.org

1, 2, 9, 31, 109, 339, 1039, 2957, 8135, 21280, 53688, 130174, 305539, 693598, 1528901, 3274785, 6832548, 13900570, 27626151, 53692474, 102193925, 190678199, 349172204, 628122125, 1111050987, 1934048642, 3315905471, 5603441375, 9339723645, 15364504830
Offset: 0

Views

Author

Alois P. Heinz, Oct 06 2016

Keywords

Crossrefs

Column k=10 of A277239.
Showing 1-10 of 10 results.