cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A001055 The multiplicative partition function: number of ways of factoring n with all factors greater than 1 (a(1) = 1 by convention).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 4, 1, 2, 2, 5, 1, 4, 1, 4, 2, 2, 1, 7, 2, 2, 3, 4, 1, 5, 1, 7, 2, 2, 2, 9, 1, 2, 2, 7, 1, 5, 1, 4, 4, 2, 1, 12, 2, 4, 2, 4, 1, 7, 2, 7, 2, 2, 1, 11, 1, 2, 4, 11, 2, 5, 1, 4, 2, 5, 1, 16, 1, 2, 4, 4, 2, 5, 1, 12, 5, 2, 1, 11, 2, 2, 2, 7, 1, 11, 2, 4, 2, 2, 2, 19, 1, 4, 4, 9, 1, 5, 1
Offset: 1

Views

Author

Keywords

Comments

From David W. Wilson, Feb 28 2009: (Start)
By a factorization of n we mean a multiset of integers > 1 whose product is n.
For example, 6 is the product of 2 such multisets, {2, 3} and {6}, so a(6) = 2.
Similarly 8 is the product of 3 such multisets, {2, 2, 2}, {2, 4} and {8}, so a(8) = 3.
1 is the product of 1 such multiset, namely the empty multiset {}, whose product is by definition the multiplicative identity 1. Hence a(1) = 1. (End)
a(n) = # { k | A064553(k) = n }. - Reinhard Zumkeller, Sep 21 2001; Benoit Cloitre and N. J. A. Sloane, May 15 2002
Number of members of A025487 with n divisors. - Matthew Vandermast, Jul 12 2004
See sequence A162247 for a list of the factorizations of n and a program for generating the factorizations for any n. - T. D. Noe, Jun 28 2009
So a(n) gives the number of different prime signatures that can be found among the integers that have n divisors. - Michel Marcus, Nov 11 2015
For n > 0, also the number of integer partitions of n with product n, ranked by A301987. For example, the a(12) = 4 partitions are: (12), (6,2,1,1,1,1), (4,3,1,1,1,1,1), (3,2,2,1,1,1,1,1). See also A380218. In general, A379666(m,n) = a(n) for any m >= n. - Gus Wiseman, Feb 07 2025

Examples

			1: 1, a(1) = 1
2: 2, a(2) = 1
3: 3, a(3) = 1
4: 4 = 2*2, a(4) = 2
6: 6 = 2*3, a(6) = 2
8: 8 = 2*4 = 2*2*2, a(8) = 3
etc.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 844.
  • S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 292-295.
  • Amarnath Murthy and Charles Ashbacher, Generalized Partitions and Some New Ideas on Number Theory and Smarandache Sequences, Hexis, Phoenix; USA 2005. See Section 1.4.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • G. Tenenbaum, Introduction to analytic and probabilistic number theory, Cambridge University Press, 1995, p. 198, exercise 9 (in the third edition 2015, p. 296, exercise 211).

Crossrefs

A045782 gives the range of a(n).
For records see A033833, A033834.
Row sums of A316439 (for n>1).
Cf. A096276 (partial sums).
The additive version is A000041 (integer partitions), strict A000009.
Row sums of A318950.
A002865 counts partitions into parts > 1.
A069016 counts distinct sums of factorizations.
A319000 counts partitions by product and sum, row sums A319916.
A379666 (transpose A380959) counts partitions by sum and product, without 1's A379668, strict A379671.

Programs

  • Haskell
    a001055 = (map last a066032_tabl !!) . (subtract 1)
    -- Reinhard Zumkeller, Oct 01 2012
    
  • Java
    public class MultiPart {
        public static void main(String[] argV) {
            for (int i=1;i<=100;++i) System.out.println(1+getDivisors(2,i));
        }
        public static int getDivisors(int min,int n) {
            int total = 0;
            for (int i=min;i=i) { ++total; if (n/i>i) total+=getDivisors(i,n/i); }
            return total;
        }
    } \\ Scott R. Shannon, Aug 21 2019
  • Maple
    with(numtheory):
    T := proc(n::integer, m::integer)
            local A, summe, d:
            if isprime(n) then
                    if n <= m then
                            return 1;
                    end if:
                    return 0 ;
            end if:
            A := divisors(n) minus {n, 1}:
            for d in A do
                    if d > m then
                            A := A minus {d}:
                    end if:
            end do:
            summe := add(T(n/d,d),d=A) ;
            if n <=m then
                    summe := summe + 1:
            end if:
            summe ;
    end proc:
    A001055 := n -> T(n, n):
    [seq(A001055(n), n=1..100)]; # Reinhard Zumkeller and Ulrich Schimke (ulrschimke(AT)aol.com)
  • Mathematica
    c[1, r_] := c[1, r]=1; c[n_, r_] := c[n, r] = Module[{ds, i}, ds = Select[Divisors[n], 1 < # <= r &]; Sum[c[n/ds[[i]], ds[[i]]], {i, 1, Length[ds]}]]; a[n_] := c[n, n]; a/@Range[100] (* c[n, r] is the number of factorizations of n with factors <= r. - Dean Hickerson, Oct 28 2002 *)
    T[, 1] = T[1, ] = 1;
    T[n_, m_] := T[n, m] = DivisorSum[n, Boole[1 < # <= m] * T[n/#, #]&];
    a[n_] := T[n, n];
    a /@ Range[100] (* Jean-François Alcover, Jan 03 2020 *)
  • PARI
    /* factorizations of n with factors <= m (n,m positive integers) */
    fcnt(n,m) = {local(s);s=0;if(n == 1,s=1,fordiv(n,d,if(d > 1 & d <= m,s=s+fcnt(n/d,d))));s}
    A001055(n) = fcnt(n,n) \\ Michael B. Porter, Oct 29 2009
    
  • PARI
    \\ code using Dirichlet g.f., based on Somos's code for A007896
    {a(n) = my(A, v, w, m);
    if(
    n<1, 0,
    \\ define unit vector v = [1, 0, 0, ...] of length n
    v = vector(n, k, k==1);
    for(k=2, n,
    m = #digits(n, k) - 1;
    \\ expand 1/(1-x)^k out far enough
    A = (1 - x)^ -1 + x * O(x^m);
    \\ w = zero vector of length n
    w = vector(n);
    \\ convert A to a vector
    for(i=0, m, w[k^i] = polcoeff(A, i));
    \\ build the answer
    v = dirmul(v, w)
    );
    v[n]
    )
    };
    \\ produce the sequence
    vector(100,n,a(n)) \\ N. J. A. Sloane, May 26 2014
    
  • PARI
    v=vector(100, k, k==1); for(n=2, #v, v+=dirmul(v, vector(#v, k, (k>1) && n^valuation(k,n)==k)) ); v \\ Max Alekseyev, Jul 16 2014
    
  • Python
    from sympy import divisors, isprime
    def T(n, m):
        if isprime(n): return 1 if n<=m else 0
        A=filter(lambda d: d<=m, divisors(n)[1:-1])
        s=sum(T(n//d, d) for d in A)
        return s + 1 if n<=m else s
    def a(n): return T(n, n)
    print([a(n) for n in range(1, 106)]) # Indranil Ghosh, Aug 19 2017
    

Formula

The asymptotic behavior of this sequence was studied by Canfield, Erdős & Pomerance and Luca, Mukhopadhyay, & Srinivas. - Jonathan Vos Post, Jul 07 2008
Dirichlet g.f.: Product_{k>=2} 1/(1 - 1/k^s).
If n = p^k for a prime p, a(n) = partitions(k) = A000041(k).
Since the sequence a(n) is the right diagonal of A066032, the given recursive formula for A066032 applies (see Maple program). - Reinhard Zumkeller and Ulrich Schimke (ulrschimke(AT)aol.com)
a(A002110(n)) = A000110(n).
a(p^k*q^k) = A002774(k) if p and q are distinct primes. - R. J. Mathar, Jun 06 2024
a(n) = A028422(n) + 1. - Gus Wiseman, Feb 07 2025

Extensions

Incorrect assertion about asymptotic behavior deleted by N. J. A. Sloane, Jun 08 2009

A054225 Triangle read by rows: row n (n>=0) gives the number of partitions of (n,0), (n-1,1), (n-2,2), ..., (0,n) respectively into sums of pairs.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 3, 4, 4, 3, 5, 7, 9, 7, 5, 7, 12, 16, 16, 12, 7, 11, 19, 29, 31, 29, 19, 11, 15, 30, 47, 57, 57, 47, 30, 15, 22, 45, 77, 97, 109, 97, 77, 45, 22, 30, 67, 118, 162, 189, 189, 162, 118, 67, 30, 42, 97, 181, 257, 323, 339, 323, 257, 181, 97, 42, 56, 139, 267, 401, 522, 589, 589, 522, 401, 267, 139, 56
Offset: 0

Views

Author

Marc LeBrun, Feb 04 2000

Keywords

Comments

By analogy with ordinary partitions (A000041). The empty partition gives T(0,0)=1 by definition. A054225 and A201377 give partitions of pairs into sums of distinct pairs. Parts (i,j) are "positive" in the sense that min {i,j} >= 0 and max {i,j} >0. The empty partition of (0,0) is counted as 1.
Or, triangle T(n,k) of bipartite partitions of n objects, k of which are black.
Or, number of ways to factor p^(n-k)*q^k where p and q are distinct primes.
In the paper by F. C. Auluck: "On partitions of bipartite numbers", p.74, in the formula for fixed m there should be factor 1/m!. The correct asymptotic formula is p(m, n) ~ (sqrt(6*n)/Pi)^m * exp(Pi*sqrt(2*n/3)) / (4*sqrt(3)*m!*n). - Vaclav Kotesovec, Feb 01 2016
T(n,k)=T(n,k-n) is the number of multiset partitions of the multiset {1^k, 2^(n-k)}, see example link. - Joerg Arndt, Jan 01 2024
Let R be the ring of power series in two countably infinite sets of variables x_1,y_1,x_2,y_2,... that are invariant under the diagonal action (i.e, the group S of permutations of positive integers acts by w(x_i)=x_{w(i)} and w(y_i)=y_{w(i)}). Then T(n,k) is the dimension of the (n,k)-bigraded piece of R, i.e., the bihomogeneous power series of degree n in the x-variables and k in the y-variables that are S-invariant. - Jeremy L. Martin, Nov 27 2024

Examples

			The second row (n=1) is 1,1 since (1,0) and (0,1) each have a single partition.
The third row (n=2) is 2, 2, 2 from (2,0) = (1,0)+(1,0), (1,1) = (1,0)+(0,1), (0,2) = (0,1)+(0,1).
In the fourth row (n=3), T(2,1)=4 from (2,1) = (2,0)+(0,1) = (1,0)+(1,1) = (1,0)+(1,0)+(0,1).
The triangle begins:
   1;
   1,  1;
   2,  2,  2;
   3,  4,  4,  3;
   5,  7,  9,  7,   5;
   7, 12, 16, 16,  12,  7;
  11, 19, 29, 31,  29, 19, 11;
  15, 30, 47, 57,  57, 47, 30, 15;
  22, 45, 77, 97, 109, 97, 77, 45, 22;
  ...
A further example: T(2,2) = 9:
[(2,2)],
[(2,1),(0,1)],
[(2,0),(0,2)],
[(2,0),(0,1),(0,1)],
[(1,2),(1,0)],
[(1,1),(1,1)],
[(1,1),(1,0),(0,1)],
[(1,0),(1,0),(0,2)],
[(1,0),(1,0),(0,1),(0,1)].
		

References

  • M. S. Cheema, Tables of partitions of Gaussian integers, National Institute of Sciences of India, New Delhi, 1956.
  • D. E. Knuth, The Art of Computer Programming, Vol. 4A, Table A-1, page 778. - N. J. A. Sloane, Dec 30 2018

Crossrefs

See A201376 for the same triangle formatted in a different way.
Row sums: A005380. a(2n, n): A002774. a(n, [n/2]): A091437. Cf. A060244.
The outer edges are T(n,0) = T(0,n) = A000041(n).
A054242 gives partitions into sums of distinct pairs.

Programs

  • Haskell
    see Zumkeller link.
  • Maple
    read transforms; t1 := mul( mul( 1/(1-x^(i-j)*y^j), j=0..i), i=1..11): SERIES2(t1,x,y,6);
  • Mathematica
    rows = 11; se = Series[ Product[ 1/(1-x^(n-k)*y^k), {n, 1, rows}, {k, 0, n}], {x, 0, rows}, {y, 0, rows}]; coes = CoefficientList[ se, {x, y}]; Flatten[ Table[ coes[[n-k+1, k]], {n, 1, rows+1}, {k, 1, n}]] (* Jean-François Alcover, Nov 21 2011, after g.f. *)
    p = 2; q = 3; b[n_, k_] := b[n, k] = If[n>k, 0, 1] + If[PrimeQ[n], 0, Sum[If[d>k, 0, b[n/d, d]], {d, DeleteCases[Divisors[n], 1|n]}]]; t[n_, k_] := b[p^(n-k)*q^k, p^(n-k)*q^k]; Table[t[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 13 2014, after Alois P. Heinz *)
  • PARI
    {T(n, k) = if( n<0 || k<0, 0, polcoeff( polcoeff( prod( i=1, n, prod( j=0, i, 1 / (1 - x^i * y^j), 1 + x * O(x^n))),n),k))} /* Michael Somos, Apr 19 2005 */
    

Formula

G.f.: Product_{i>=1, j=0..i} 1/(1-x^(i-j)*y^j).
Series ends ... + 7*x^5 + 12*x^4*y + 16*x^3*y^2 + 16*x^2*y^3 + 12*x*y^4 + 7*y^5 + 5*x^4 + 7*x^3*y + 9*x^2*y^2 + 7*x*y^3 + 5*y^4 + 3*x^3 + 4*x^2*y + 4*x*y^2 + 3*y^3 + 2*x^2 + 2*x*y + 2*y^2 + x + y + 1.

Extensions

Entry revised by N. J. A. Sloane, Nov 30 2011, to incorporate corrections provided by Reinhard Zumkeller, who also contributed the alternative version A201376. Once the errors were corrected, this sequence coincided with A060243, due to N. J. A. Sloane, Mar 22 2001, which included edits by Vladeta Jovovic, Mar 23 2001, and Christian G. Bower, Jan 08 2004. The two entries have now been merged.

A219727 Number A(n,k) of k-partite partitions of {n}^k into k-tuples; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 5, 9, 3, 1, 1, 15, 66, 31, 5, 1, 1, 52, 712, 686, 109, 7, 1, 1, 203, 10457, 27036, 6721, 339, 11, 1, 1, 877, 198091, 1688360, 911838, 58616, 1043, 15, 1, 1, 4140, 4659138, 154703688, 231575143, 26908756, 476781, 2998, 22, 1
Offset: 0

Views

Author

Alois P. Heinz, Nov 26 2012

Keywords

Comments

A(n,k) is the number of factorizations of m^n where m is a product of k distinct primes. A(2,2) = 9: (2*3)^2 = 36 has 9 factorizations: 36, 3*12, 4*9, 3*3*4, 2*18, 6*6, 2*3*6, 2*2*9, 2*2*3*3.
A(n,k) is the number of (n*k) X k matrices with nonnegative integer entries and column sums n up to permutation of rows. - Andrew Howroyd, Dec 10 2018

Examples

			A(1,3) = 5: [(1,1,1)], [(1,1,0),(0,0,1)], [(1,0,1),(0,1,0)], [(1,0,0),(0,1,0),(0,0,1)], [(0,1,1),(1,0,0)].
A(2,2) = 9: [(2,2)], [(2,1),(0,1)], [(2,0),(0,2)], [(2,0),(0,1),(0,1)], [(1,2),(1,0)], [(1,1),(1,1)], [(1,1),(1,0),(0,1)], [(1,0),(1,0),(0,2)], [(1,0),(1,0),(0,1),(0,1)].
Square array A(n,k) begins:
  1,   1,    1,      1,        1,         1,         1,       1, ...
  1,   1,    2,      5,       15,        52,       203,     877, ...
  1,   2,    9,     66,      712,     10457,    198091, 4659138, ...
  1,   3,   31,    686,    27036,   1688360, 154703688, ...
  1,   5,  109,   6721,   911838, 231575143, ...
  1,   7,  339,  58616, 26908756, ...
  1,  11, 1043, 476781, ...
  1,  15, 2998, ...
		

Crossrefs

Columns k=0..3 give: A000012, A000041, A002774, A219678.
Rows n=0..4 give: A000012, A000110, A020555, A322487, A358781.
Main diagonal gives A322488.
Cf. A188392, A219585 (partitions of {n}^k into distinct k-tuples), A256384, A318284, A318951.

Programs

  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    D(p, n, k)={my(v=vector(n)); for(i=1, #p, v[p[i]]++); EulerT(v)[n]^k/prod(i=1, #v, i^v[i]*v[i]!)}
    T(n, k)={my(m=n*k, q=Vec(exp(O(x*x^m) + intformal((x^n-1)/(1-x)))/(1-x))); if(n==0, 1, sum(j=0, m, my(s=0); forpart(p=j, s+=D(p,n,k), [1,n]); s*q[#q-j]))} \\ Andrew Howroyd, Dec 11 2018

A096443 Number of partitions of a multiset whose signature is the n-th partition (in Mathematica order).

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 5, 5, 7, 9, 11, 15, 7, 12, 16, 21, 26, 36, 52, 11, 19, 29, 38, 31, 52, 74, 66, 92, 135, 203, 15, 30, 47, 64, 57, 98, 141, 109, 137, 198, 296, 249, 371, 566, 877, 22, 45, 77, 105, 97, 171, 250, 109, 212, 269, 392, 592, 300, 444, 560, 850, 1315, 712, 1075
Offset: 0

Views

Author

Jon Wild, Aug 11 2004

Keywords

Comments

The signature of a multiset is the partition consisting of the multiplicities of its elements; e.g., {a,a,a,b,c} is represented by [3,1,1]. The Mathematica order for partitions orders by ascending number of total elements, then by descending numerical order of its representation. The list begins:
n.....#elements.....n-th partition
0.....0 elements:....[]
1.....1 element:.....[1]
2.....2 elements:....[2]
3....................[1,1]
4.....3 elements:....[3]
5....................[2,1]
6....................[1,1,1]
7.....4 elements:....[4]
8....................[3,1]
9....................[2,2]
10...................[2,1,1]
11...................[1,1,1,1]
12....5 elements:....[5]
13...................[4,1]
A000041 and A000110 are subsequences for conjugate partitions. A000070 and A035098 are also subsequences for conjugate partitions. - Alford Arnold, Dec 31 2005
A002774 and A020555 is another pair of subsequences for conjugate partitions. - Franklin T. Adams-Watters, May 16 2006

Examples

			The 10th partition is [2,1,1]. The partitions of a multiset whose elements have multiplicities 2,1,1 - for example, {a,a,b,c} - are:
{{a,a,b,c}}
{{a,a,b},{c}}
{{a,a,c},{b}}
{{a,b,c},{a}}
{{a,a},{b,c}}
{{a,b},{a,c}}
{{a,a},{b},{c}}
{{a,b},{a},{c}}
{{a,c},{a},{b}}
{{b,c},{a},{a}}
{{a},{a},{b},{c}}
We see there are 11 partitions of this multiset, so a(10)=11.
Also, a(n) is the number of distinct factorizations of A063008(n). For example, A063008(10) = 60 and 60 has 11 factorizations: 60, 30*2, 20*3, 15*4, 15*2*2, 12*5, 10*6, 10*3*2, 6*5*2, 5*4*3, 5*3*2*2 which confirms that a(10) = 11.
		

Crossrefs

Programs

  • Mathematica
    MultiPartiteP[n : {___Integer?NonNegative}] :=
    Block[{p, $RecursionLimit = 1024, firstPositive},
      firstPositive =
       Compile[{{vv, _Integer, 1}},
        Module[{k = 1}, Do[If[el == 0, k++, Break[]], {el, vv}]; k]];
      p[{0 ...}] := 1;
      p[v_] :=
       p[v] = Module[{len = Length[v], it, k, zeros, sum, pos, gcd},
         it = Array[k, len];
         pos = firstPositive[v];
         zeros = ConstantArray[0, len];
         sum = 0;
         Do[If[it == zeros, Continue[]];
          gcd = GCD @@ it;
          sum += it[[pos]] DivisorSigma[-1, gcd] p[v - it];,
          Evaluate[Sequence @@ Thread[{it, 0, v}]]];
         sum/v[[pos]]];
      p[n]];
    ParallelMap[MultiPartiteP,
    Flatten[Table[IntegerPartitions[k], {k, 0, 8}], 1]]
    (* Oleksandr Pavlyk, Jan 23 2011 *)

Extensions

Edited by Franklin T. Adams-Watters, May 16 2006

A219554 Number of bipartite partitions of (n,n) into distinct pairs.

Original entry on oeis.org

1, 2, 5, 17, 46, 123, 323, 809, 1966, 4660, 10792, 24447, 54344, 118681, 254991, 539852, 1127279, 2323849, 4733680, 9535079, 19005282, 37507802, 73333494, 142112402, 273092320, 520612305, 984944052, 1849920722, 3450476080, 6393203741, 11770416313, 21538246251
Offset: 0

Views

Author

Alois P. Heinz, Nov 22 2012

Keywords

Comments

Number of factorizations of p^n*q^n into distinct factors where p, q are distinct primes.
From Vaclav Kotesovec, Feb 05 2016: (Start)
Formula (15) in the article by S. M. Luthra: "Partitions of bipartite numbers when the summands are unequal", p. 376, is incorrect. The similar error is also in the article by F. C. Auluck: "On partitions of bipartite numbers" (see A002774).
The correct formula (15) is q(m, n) ~ c/(2*sqrt(3)*Pi) * exp(3*c*(m*n)^(1/3) + 3*d*(m^(2/3)/n^(1/3) + n^(2/3)/m^(1/3)) - 3*log(2)/4 + (m/n + n/m)*log(2)/12 + 3*d^2/c - 3*d^2*(m/n + n/m)/c - 2*log(m*n)/3), where m and n are of the same order, c = (3/4*Zeta(3))^(1/3), d = Zeta(2)/(12*c).
If m = n then q(m,n) = a(n).
For the asymptotic formula for fixed m see A054242.
(End)

Examples

			a(0) = 1: [].
a(1) = 2: [(1,1)], [(1,0),(0,1)].
a(2) = 5: [(2,2)], [(2,1),(0,1)], [(2,0),(0,2)], [(1,2),(1,0)], [(1,1),(1,0),(0,1)].
		

Crossrefs

Programs

  • Mathematica
    (* This program is not convenient for a large number of terms *)
    a[n_] := If[n == 0, 1, (1/2) Coefficient[Product[O[x]^(n+1) + O[y]^(n+1) + (1 + x^i y^j ), {i, 0, n}, {j, 0, n}] // Normal, (x y)^n]];
    a /@ Range[0, 31] (* Jean-François Alcover, Jun 26 2013, updated Sep 16 2019 *)
    nmax = 20; p = 1; Do[Do[p = Expand[p*(1 + x^i*y^j)]; If[i*j != 0, p = Select[p, (Exponent[#, x] <= nmax) && (Exponent[#, y] <= nmax) &]], {i, 0, nmax}], {j, 0, nmax}]; p = Select[p, Exponent[#, x] == Exponent[#, y] &]; Flatten[{1, Table[Coefficient[p, x^n*y^n]/2, {n, 1, nmax}]}] (* Vaclav Kotesovec, Jan 15 2016 *)

Formula

a(n) = [x^n*y^n] 1/2 * Product_{i,j>=0} (1+x^i*y^j).
a(n) = A054242(2*n,n) = A201377(n,n).
a(n) ~ Zeta(3)^(1/3) * exp(3^(4/3) * Zeta(3)^(1/3) * n^(2/3) / 2^(2/3) + Pi^2 * n^(1/3) / (6^(4/3) * Zeta(3)^(1/3)) - Pi^4/(1296*Zeta(3))) / (2^(9/4) * 3^(1/6) * Pi * n^(4/3)). - Vaclav Kotesovec, Jan 31 2016

A277239 Number A(n,k) of factorizations of m^n into exactly k factors, where m is a product of two distinct primes; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 2, 5, 1, 0, 1, 2, 8, 8, 1, 0, 1, 2, 9, 19, 13, 1, 0, 1, 2, 9, 27, 42, 18, 1, 0, 1, 2, 9, 30, 74, 78, 25, 1, 0, 1, 2, 9, 31, 95, 168, 139, 32, 1, 0, 1, 2, 9, 31, 105, 248, 363, 224, 41, 1, 0, 1, 2, 9, 31, 108, 300, 614, 703, 350, 50, 1, 0
Offset: 0

Views

Author

Alois P. Heinz, Oct 06 2016

Keywords

Examples

			Square array A(n,k) begins:
  1, 1,  1,   1,    1,    1,    1,    1,    1, ...
  0, 1,  2,   2,    2,    2,    2,    2,    2, ...
  0, 1,  5,   8,    9,    9,    9,    9,    9, ...
  0, 1,  8,  19,   27,   30,   31,   31,   31, ...
  0, 1, 13,  42,   74,   95,  105,  108,  109, ...
  0, 1, 18,  78,  168,  248,  300,  325,  335, ...
  0, 1, 25, 139,  363,  614,  814,  938, 1002, ...
  0, 1, 32, 224,  703, 1367, 1996, 2457, 2741, ...
  0, 1, 41, 350, 1297, 2879, 4642, 6128, 7168, ...
		

Crossrefs

Main diagonal gives A254686.
A(n,2n) gives A002774.

A000291 Number of bipartite partitions of n white objects and 2 black ones.

Original entry on oeis.org

2, 4, 9, 16, 29, 47, 77, 118, 181, 267, 392, 560, 797, 1111, 1541, 2106, 2863, 3846, 5142, 6808, 8973, 11733, 15275, 19753, 25443, 32582, 41569, 52770, 66757, 84078, 105555, 131995, 164566, 204450, 253292, 312799, 385285, 473183, 579722, 708353, 863553
Offset: 0

Views

Author

Keywords

Comments

Number of ways to factor p^n*q^2 where p and q are distinct primes.
a(n) is the number of multiset partitions of the multiset {r^n, s^2}. - Joerg Arndt, Jan 01 2024

Examples

			a(2) = 9: let p = 2 and q = 3, p^2*q^2 = 36; there are 9 factorizations: (36), (18*2), (12*3), (9*4), (9*2^2), (6*6), (6*3*2), (4*3^2), (3^2*2^2).
		

References

  • M. S. Cheema and H. Gupta, Tables of Partitions of Gaussian Integers. National Institute of Sciences of India, Mathematical Tables, Vol. 1, New Delhi, 1956, p. 1.
  • Amarnath Murthy, "Generalization of Smarandache Factor Partition introducing Smarandache Factor Partition". Smarandache Notions Journal, 1-2-3, vol. 11, 2000.
  • Amarnath Murthy, Program for finding out the number of Smarandache Factor Partitions. Smarandache Notions Journal, Vol. 13, 2002.
  • Amarnath Murthy, e-book, MS LIT format, "Ideas on Smarandache Notions".
  • Amarnath Murthy and Charles Ashbacher, Generalized Partitions and Some New Ideas on Number Theory and Smarandache Sequences, Hexis, Phoenix; USA 2005. See Section 1.9, 1.14.
  • D. E. Knuth, The Art of Computer Programming, Vol. 4A, Table A-1, page 778. - N. J. A. Sloane, Dec 30 2018
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 2 of A054225.
Cf. A005380.

Programs

  • Mathematica
    max = 40; col = 2; s1 = Series[Product[1/(1-x^(n-k)*y^k), {n, 1, max+2}, {k, 0, n}], {y, 0, col}] // Normal; s2 = Series[s1, {x, 0, max+1}]; a[n_] := SeriesCoefficient[s2, {x, 0, n}, {y, 0, col}]; Table[ a[n] , {n, 0, max}] (* Jean-François Alcover, Mar 13 2014 *)
    nmax = 50; CoefficientList[Series[1/(1-x)*(1 + 1/(1-x^2))*Product[1/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 01 2016 *)

Formula

a(n) = if n <= 2 then A054225(2,n) else A054225(n,2). - Reinhard Zumkeller, Nov 30 2011
From Vaclav Kotesovec, Feb 01 2016, corrected Nov 05 2016: (Start)
a(n) = A000070(n) + A000097(n).
a(n) ~ sqrt(3) * exp(Pi*sqrt(2*n/3)) / (4*Pi^2) * (1 + 83*Pi/(24*sqrt(6*n))).
(End)

Extensions

Edited by Christian G. Bower, Jan 08 2004

A000412 Number of bipartite partitions of n white objects and 3 black ones.

Original entry on oeis.org

3, 7, 16, 31, 57, 97, 162, 257, 401, 608, 907, 1325, 1914, 2719, 3824, 5313, 7316, 9973, 13495, 18105, 24132, 31938, 42021, 54948, 71484, 92492, 119120, 152686, 194887, 247693, 313613, 395547, 497154, 622688, 777424, 967525, 1200572, 1485393, 1832779, 2255317
Offset: 0

Views

Author

Keywords

Comments

Number of ways to factor p^n*q^3 where p and q are distinct primes.
Number of Gaussian partitions of n+3*i or 3+n*i where a "Gaussian partition" is a way of writing a Gaussian integer with nonnegative parts as a sum of Gaussian integers with nonnegative parts, imaginary numbers and real numbers. For k = 3+1*i (where i is the imaginary unit), the a(1)=7 ways to write k (where parentheses represent a complex number and a lack of them represents a sum of a real and imaginary number) would be 3+i, (3+i), 2+1+i, (2+i)+1, (1+i)+2, 1+1+1+i, (1+i)+1+1. - Yali Harrary, Nov 20 2022
a(n) is the number of multiset partitions of the multiset {r^n, s^3}. - Joerg Arndt, Jan 01 2024

References

  • M. S. Cheema and H. Gupta, Tables of Partitions of Gaussian Integers. National Institute of Sciences of India, Mathematical Tables, Vol. 1, New Delhi, 1956, p. 1.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 3 of A054225.
Cf. A005380.

Programs

  • Mathematica
    max = 40; col = 3; s1 = Series[Product[1/(1-x^(n-k)*y^k), {n, 1, max+2}, {k, 0, n}], {y, 0, col}] // Normal; s2 = Series[s1, {x, 0, max+1}]; a[n_] := SeriesCoefficient[s2, {x, 0, n}, {y, 0, col}]; Table[ a[n] , {n, 0, max}] (* Jean-François Alcover, Mar 13 2014 *)
    nmax = 50; CoefficientList[Series[(3 + x - x^2 - 2*x^3 - x^4 + x^5)/((1-x)*(1-x^2)*(1-x^3)) * Product[1/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 01 2016 *)

Formula

a(n) = if n <= 3 then A054225(3,n), otherwise a(n) = A054225(n,3). - Reinhard Zumkeller, Nov 30 2011
a(n) ~ exp(Pi*sqrt(2*n/3)) * sqrt(n) / (2*sqrt(2)*Pi^3). - Vaclav Kotesovec, Feb 01 2016
a(n) = A000098(n) + A000070(n) + A014153(n). - Yali Harrary, Nov 20 2022

Extensions

Edited by Christian G. Bower, Jan 08 2004

A219560 Number of tripartite partitions of (n,n,n) into distinct triples.

Original entry on oeis.org

1, 5, 40, 364, 2897, 21369, 148257, 970246, 6032341, 35850410, 204646488, 1126463948, 5999145787, 30999381232, 155798366059, 763194776551, 3650648583934, 17079277343463, 78262895082681, 351708874155894, 1551843168854346
Offset: 0

Views

Author

Alois P. Heinz, Nov 23 2012

Keywords

Comments

Number of factorizations of (p*q*r)^n into distinct factors where p, q, r are distinct primes.

Examples

			a(0) = 1: [].
a(1) = 5: [(1,1,1)], [(1,1,0),(0,0,1)], [(1,0,1),(0,1,0)], [(0,1,1),(1,0,0)], [(0,0,1),(0,1,0),(1,0,0)].
		

Crossrefs

Column k=3 of A219585.

Programs

  • Maple
    with(numtheory):
    b:= proc(n, k) option remember;
          `if`(n>k, 0, 1) +`if`(isprime(n), 0,
          add(`if`(d>k, 0, b(n/d, d-1)), d=divisors(n) minus {1, n}))
        end:
    a:= n-> b(30^n$2):
    seq(a(n), n=0..10);  # Alois P. Heinz, May 26 2013
  • Mathematica
    b[n_, k_] := b[n, k] = If[n > k, 0, 1] + If[PrimeQ[n], 0, Sum[If[d > k, 0, b[n/d, d - 1]], {d, Divisors[n][[2 ;; -2]]}]]; a[0] = 1; a[n_] := b[30^n, 30^n];  Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 0, 20}] (* Jean-François Alcover, Jan 15 2016, after Alois P. Heinz *)

Formula

a(n) = [(x*y*z)^n] 1/2 * Product_{i,j,k>=0} (1+x^i*y^j*z^k).

Extensions

a(16) from Alois P. Heinz, May 26 2013
a(17) from Alois P. Heinz, Sep 24 2014
More terms from Jean-François Alcover, Jan 15 2016

A000465 Number of bipartite partitions of n white objects and 4 black ones.

Original entry on oeis.org

5, 12, 29, 57, 109, 189, 323, 522, 831, 1279, 1941, 2876, 4215, 6066, 8644, 12151, 16933, 23336, 31921, 43264, 58250, 77825, 103362, 136371, 178975, 233532, 303268, 391831, 504069, 645520, 823419, 1046067, 1324136, 1669950, 2099104, 2629685, 3284325, 4089300
Offset: 0

Views

Author

Keywords

Comments

Number of ways to factor p^n*q^4 where p and q are distinct primes.
a(n) is the number of multiset partitions of the multiset {r^n, s^4}. - Joerg Arndt, Jan 01 2024

References

  • M. S. Cheema and H. Gupta, Tables of Partitions of Gaussian Integers. National Institute of Sciences of India, Mathematical Tables, Vol. 1, New Delhi, 1956, p. 1.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 4 of A054225.
Cf. A005380.

Programs

  • Mathematica
    max = 40; col = 4; s1 = Series[Product[1/(1-x^(n-k)*y^k), {n, 1, max+2}, {k, 0, n}], {y, 0, col}] // Normal; s2 = Series[s1, {x, 0, max+1}]; a[n_] := SeriesCoefficient[s2, {x, 0, n}, {y, 0, col}]; Table[ a[n] , {n, 0, max}] (* Jean-François Alcover, Mar 13 2014 *)
    nmax = 50; CoefficientList[Series[(5 + 2*x - 3*x^3 - 5*x^4 - x^5 + 3*x^7 + x^8 - x^9)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)) * Product[1/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 01 2016 *)

Formula

a(n) = if n <= 4 then A054225(4,n) else A054225(n,4). - Reinhard Zumkeller, Nov 30 2011
a(n) ~ sqrt(3) * n * exp(Pi*sqrt(2*n/3)) / (8*Pi^4). - Vaclav Kotesovec, Feb 01 2016

Extensions

Edited by Christian G. Bower, Jan 08 2004
Showing 1-10 of 19 results. Next