A277240 Number of factorizations of m^n into exactly four factors, where m is a product of two distinct primes.
1, 2, 9, 27, 74, 168, 363, 703, 1297, 2247, 3742, 5967, 9241, 13859, 20307, 29052, 40786, 56187, 76233, 101858, 134377, 175068, 225640, 287772, 363673, 455482, 565977, 697875, 854594, 1039500, 1256787, 1510547, 1805833, 2147607, 2541870, 2994543, 3512737
Offset: 0
Keywords
Examples
a(2) = 9: (2*3)^2 = 2*2*3*3 = 1*3*3*4 = 1*2*3*6 = 1*2*2*9 = 1*1*4*9 = 1*1*6*6 = 1*1*2*18 = 1*1*3*12 = 1*1*1*36.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (2,1,-2,-2,-2,5,2,0,-2,-5,2,2,2,-1,-2,1)
Crossrefs
Column k=4 of A277239.
Programs
-
Mathematica
LinearRecurrence[{2,1,-2,-2,-2,5,2,0,-2,-5,2,2,2,-1,-2,1},{1,2,9,27,74,168,363,703,1297,2247,3742,5967,9241,13859,20307,29052},40] (* Harvey P. Dale, May 21 2024 *)
Formula
G.f.: -(x^12 +4*x^10 +9*x^9 +17*x^8 +17*x^7 +24*x^6 +17*x^5 +17*x^4 +9*x^3 +4*x^2 +1) / ((x^2+1) *(x^2+x+1)^2 *(x+1)^3 *(x-1)^7).