cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277252 a(n) = a(n-2) + a(n-3) + a(n-4) with a(0) = 0, a(1) = a(2) = 1, a(3) = 0.

Original entry on oeis.org

0, 1, 1, 0, 2, 2, 3, 4, 7, 9, 14, 20, 30, 43, 64, 93, 137, 200, 294, 430, 631, 924, 1355, 1985, 2910, 4264, 6250, 9159, 13424, 19673, 28833, 42256, 61930, 90762, 133019, 194948, 285711, 418729, 613678, 899388, 1318118, 1931795, 2831184, 4149301, 6081097, 8912280, 13061582, 19142678, 28054959
Offset: 0

Views

Author

Nicolas Bègue, Oct 07 2016

Keywords

Comments

Limit a(n+1)/a(n) = 1.465571... (as in Narayana's cows sequence A000930).

Crossrefs

Summed to A277253 equals A000930.

Programs

  • Maple
    a:= n-> (<<0|1|0|0>, <0|0|1|0>,
              <0|0|0|1>, <1|1|1|0>>^n. <<0,1,1,0>>)[1,1]:
    seq(a(n), n=0..50);  # Alois P. Heinz, Oct 07 2016
  • Mathematica
    CoefficientList[Series[x*(1 + x - x^2)/(1 - x^2 - x^3 - x^4), {x, 0, 50}], x]
    RecurrenceTable[{a[n] == a[n - 2] + a[n - 3] + a[n - 4], a[1] == 0,  a[2] == a[3] == 1, a[4] == 0}, a, {n, 52}]
    LinearRecurrence[{0, 1, 1,1}, {0,1, 1, 0},52]
  • PARI
    x='x+O('x^50); concat([0], Vec(x*(1+x-x^2)/(1-x^2-x^3-x^4))) \\ G. C. Greubel, May 02 2017

Formula

a(n) = a(n - 2) + a(n - 3) + a(n - 4).
G.f.: x*(1 + x - x^2)/(1 - x^2 - x^3 - x^4).
a(n) + A277253(n) = A000930(n).

Extensions

Corrected G.f. - G. C. Greubel, May 02 2017