cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277262 Number of walks on cubic lattice starting at (1,1,1), ending at (n,n,n), remaining in the first (nonnegative) octant and using steps (0,-1,2), (0,2,-1), (-1,0,2), (2,0,-1), (-1,2,0), and (2,-1,0).

Original entry on oeis.org

0, 1, 12, 456, 54216, 6932916, 1069256400, 170663949024, 29130191148240, 5115288488816760, 927446504770571520, 171486284915686699620, 32295496327107026335392, 6164943698859825359296740, 1190940852937573264531168944, 232287567721717805821704554232
Offset: 0

Views

Author

Alois P. Heinz, Oct 07 2016

Keywords

Crossrefs

Cf. A048116.

Programs

  • Maple
    g():= combinat[permute]([0, -1, 2]):
    b:= proc(l) option remember; `if`(l=[1$3], 1, add((p->
          `if`(p[1]<0, 0, b(p)))(sort(l-x)), x=g()))
        end:
    a:= n-> b([n$3]):
    seq(a(n), n=0..20);
  • Mathematica
    g = Permutations[{0, -1, 2}];
    b[l_] := b[l] = If[l == {1, 1, 1}, 1, Sum[Function[p, If[p[[1]] < 0, 0, b[p]]][Sort[l - x]], {x, g}]];
    a[n_] := b[{n, n, n}];
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Mar 29 2017, translated from Maple *)

Formula

a(n) ~ c * 6^(3*n) / n, where c = 0.000020280187096503586851533... . - Vaclav Kotesovec, Oct 14 2016