cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A048116 a(n) = T(2n,n), where T is given by A048113.

Original entry on oeis.org

1, 2, 4, 12, 36, 120, 408, 1440, 5160, 18816, 69336, 258048, 967344, 3649536, 13839504, 52715952, 201556944, 773182608, 2974442112, 11471570352, 44341125312, 171732665520, 666302137056, 2589317125824, 10076939895984, 39268487472336, 153208051192848
Offset: 1

Views

Author

Keywords

Comments

Number of planar walks starting at (1,1), ending at (n,n), remaining in the first quadrant and using steps (-1,2) and (2,-1).

Crossrefs

Programs

  • Maple
    b:= proc(l) option remember; `if`(l=[1$2], 1, add((p->
          `if`(p[1]<0, 0, b(p)))(sort(l-x)), x=[[-1, 2], [2, -1]]))
        end:
    a:= n-> b([n$2]):
    seq(a(n), n=1..30);  # Alois P. Heinz, Oct 06 2016
  • Mathematica
    b[l_List] := b[l] = If[l == {1, 1}, 1, Sum[Function[p, If[p[[1]] < 0, 0, b[p]]][Sort[l - x]], {x, {{-1, 2}, {2, -1}}}]]; a[n_] := b[{n, n}]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Dec 02 2016 after Alois P. Heinz *)

Formula

a(n) ~ c * 4^n / sqrt(n), where c = 0.03748220353529780423030694970938451772844604409392271... . - Vaclav Kotesovec, Oct 07 2016

Extensions

a(1)=1 prepended by Alois P. Heinz, Oct 06 2016

A328269 Number of walks on cubic lattice starting at (0,0,0), ending at (0,n,n), remaining in the first (nonnegative) octant and using steps (0,0,1), (0,1,0), (1,0,0), (-1,1,1), (1,-1,1), and (1,1,-1).

Original entry on oeis.org

1, 3, 26, 343, 5594, 103730, 2094028, 44889351, 1006126370, 23337166962, 556199376622, 13550764116530, 336190200180652, 8468872074477060, 216120719672921820, 5577150906683145103, 145324963753397617230, 3819107708757101038562, 101122686499165125017886
Offset: 0

Views

Author

Alois P. Heinz, Oct 10 2019

Keywords

Examples

			a(1) = 3: [(0,0,0),(1,0,0),(0,1,1)], [(0,0,0),(0,1,0),(0,1,1)], [(0,0,0),(0,0,1),(0,1,1)].
a(2) = 26: [(0,0,0),(1,0,0),(2,0,0),(1,1,1),(0,2,2)], [(0,0,0),(1,0,0),(1,1,0),(1,1,1),(0,2,2)], ..., [(0,0,0),(0,0,1),(0,1,1),(0,1,2),(0,2,2)], [(0,0,0),(0,0,1),(0,0,2),(0,1,2),(0,2,2)].
		

Crossrefs

Bisection (even part) of A328280.

Programs

  • Maple
    b:= proc(l) option remember; `if`(l[-1]=0, 1, (r-> add(
          add(add(`if`(i+j+k=1, (h-> `if`(h[1]<0, 0, b(h)))(
          sort(l-[i, j, k])), 0), k=r), j=r), i=r))([$-1..1]))
        end:
    a:= n-> b([0, n$2]):
    seq(a(n), n=0..23);
  • Mathematica
    b[l_] := b[l] = If[Last[l] == 0, 1, Sum[If[i + j + k == 1, Function[h, If[h[[1]] < 0, 0, b[h]]][Sort[l - {i, j, k}]], 0], {i, {-1, 0, 1}}, {j, {-1, 0, 1}}, {k, {-1, 0, 1}}]];
    a[n_] := b[{0, n, n}];
    a /@ Range[0, 23] (* Jean-François Alcover, May 12 2020, after Maple *)

Formula

a(n) = A328300(2n,n).
a(n) is odd <=> n in { A000225 }.
a(n) ~ c * 2^(3*n) * (2 + sqrt(3))^n / n^2, where c =
0.081957778985952080274457799679795068000445171394180053136120884510526907545... - Vaclav Kotesovec, May 10 2020
Showing 1-2 of 2 results.