cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A048113 Triangular array T read by rows: T(h,k) = number of paths consisting of steps from (1,1) to (h,k) such that each step has length 1 directed up or right and each vertex (i,j) satisfies i/2<=j<=2i, for h=0,1,2,... and k=0,1,2,...

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 2, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 2, 4, 2, 0, 0, 0, 0, 0, 6, 6, 0, 0, 0, 0, 0, 0, 6, 12, 6, 0, 0, 0, 0, 0, 0, 6, 18, 18, 6, 0, 0, 0, 0, 0, 0, 0, 24, 36, 24, 0, 0, 0, 0, 0, 0, 0, 0, 24, 60, 60, 24, 0, 0, 0, 0, 0, 0, 0, 0, 24, 84, 120, 84, 24, 0, 0, 0, 0
Offset: 0

Views

Author

Keywords

Examples

			Rows: {0}; {0,0}; {0,1,0}; {0,1,1,0}; ...
		

Crossrefs

Cf. A048116.

Programs

  • Mathematica
    T[0, 0] = T[0, 1] = T[1, 0] = 0; T[1, 1] = T[2, 1] = T[1, 2] = 1; T[h_, k_] /; Not[h/2 <= k <= 2h] = 0; T[h_, k_] := T[h, k] = If[h-1 >= k/2, T[h-1, k], 0] + If[k-1 >= h/2, T[h, k-1], 0]; row[s_] := Table[T[h, s-h], {h, 0, s}]; Table[row[s], {s, 0, 12}] // Flatten (* Jean-François Alcover, Dec 02 2016 *)

Extensions

Offset changed to 0 by Alois P. Heinz, Oct 06 2016

A277262 Number of walks on cubic lattice starting at (1,1,1), ending at (n,n,n), remaining in the first (nonnegative) octant and using steps (0,-1,2), (0,2,-1), (-1,0,2), (2,0,-1), (-1,2,0), and (2,-1,0).

Original entry on oeis.org

0, 1, 12, 456, 54216, 6932916, 1069256400, 170663949024, 29130191148240, 5115288488816760, 927446504770571520, 171486284915686699620, 32295496327107026335392, 6164943698859825359296740, 1190940852937573264531168944, 232287567721717805821704554232
Offset: 0

Views

Author

Alois P. Heinz, Oct 07 2016

Keywords

Crossrefs

Cf. A048116.

Programs

  • Maple
    g():= combinat[permute]([0, -1, 2]):
    b:= proc(l) option remember; `if`(l=[1$3], 1, add((p->
          `if`(p[1]<0, 0, b(p)))(sort(l-x)), x=g()))
        end:
    a:= n-> b([n$3]):
    seq(a(n), n=0..20);
  • Mathematica
    g = Permutations[{0, -1, 2}];
    b[l_] := b[l] = If[l == {1, 1, 1}, 1, Sum[Function[p, If[p[[1]] < 0, 0, b[p]]][Sort[l - x]], {x, g}]];
    a[n_] := b[{n, n, n}];
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Mar 29 2017, translated from Maple *)

Formula

a(n) ~ c * 6^(3*n) / n, where c = 0.000020280187096503586851533... . - Vaclav Kotesovec, Oct 14 2016

A277248 Number of planar walks starting at (1,1), ending at (3n,0), remaining in the first quadrant and using steps (-1,2) and (2,-1).

Original entry on oeis.org

1, 2, 6, 24, 108, 528, 2724, 14616, 80760, 456552, 2628504, 15360216, 90879096, 543336912, 3277586136, 19924733088, 121943223576, 750756116376, 4646484480552, 28892787031008, 180420486241776, 1130930538186360, 7113550964713848, 44885329202906448
Offset: 1

Views

Author

Feng Jishe, Oct 06 2016

Keywords

Crossrefs

Cf. A048116.

Programs

  • Maple
    b:= proc(l) option remember; `if`(l=[1$2], 1, add((p->
          `if`(p[1]<0, 0, b(p)))(sort((l-x))), x=[[-1, 2], [2, -1]]))
        end:
    a:= n-> b([0,3*n]):
    seq(a(n), n=1..30);  # Alois P. Heinz, Oct 06 2016
  • Mathematica
    b[l_List] := b[l] = If[l == {1, 1}, 1, Sum[Function[p, If[p[[1]]<0, 0, b[p]]][Sort[l-x]], {x, {{-1, 2}, {2, -1}}}]]; a[n_] := b[{0, 3n}]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Dec 04 2016 after Alois P. Heinz *)

Formula

a(n) ~ c * (27/4)^n / n^(3/2), where c = 0.06045583689606517807688682344735167414726208387456561322459238109992522838... . - Vaclav Kotesovec, Oct 07 2016

Extensions

More terms from Alois P. Heinz, Oct 06 2016
Showing 1-3 of 3 results.