Feng Jishe has authored 5 sequences.
A335857
a(n) is the determinant of the n X n Hankel matrix A with A(i,j) = A000108(i+j+6) for 0<=i,j<=n-1.
Original entry on oeis.org
1, 132, 4719, 81796, 884884, 6852768, 41314284, 204951252, 869562265, 3245256300, 10880587575, 33309352440, 94307358288, 249485071616, 621856804272, 1470540624696, 3318218562009, 7179339254516, 14955909351383, 30104651175324, 58733021049780, 111358254207200
Offset: 0
a(1) = 132 because 132 is the determinant of the 1 X 1 matrix [132].
a(2) = 4719 because 4719 is the determinant of the matrix
[ 132 429 ]
[ 429 1430 ].
a(3) = 81796 because 81796 is the determinant of the matrix
[ 132, 429, 1430 ]
[ 429, 1430, 4862 ]
[ 1430, 4862, 16796 ].
G.f. = 1 + 132*x + 4719*x^2 + 81796*x^3 + 884884*x^4 + ... - _Michael Somos_, Jun 27 2023
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Jishe Feng, The explicit formula of Hankel determinant with Catalan elements, arXiv:2010.06586 [math.GM], 2020.
- Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See p. 24.
- Index entries for linear recurrences with constant coefficients, signature (16,-120,560,-1820,4368,-8008,11440,-12870,11440,-8008,4368,-1820,560,-120,16,-1).
-
Table[Binomial[n+5, 5]*Binomial[2*n+7, 3]*Binomial[2*n+9, 7]/1260, {n,0,30}] (* G. C. Greubel, Dec 17 2021 *)
a[ n_] := Binomial[n+5, 4]*Binomial[2*n+7, 3]*Binomial[2*n+9, 8]/1575; (* Michael Somos, Jun 27 2023 *)
-
H(seq)={my(n=(#seq+1)\2); matdet(matrix(n,n,i,j,seq[i+j-1]))}
a(n, k=6)={H(vector(2*n, i, my(t=i+k-1); binomial(2*t,t)/(t+1)))} \\ Andrew Howroyd, Nov 26 2020
-
{a(n) = prod(k=1, 5, (n+k)^min(6-k, k)) * prod(k=1, 4, (2*n+2*k+1)^min(5-k, k))/285768000}; /* Michael Somos, Jun 27 2023 */
-
[binomial(n+5, 5)*binomial(2*n+7, 3)*binomial(2*n+9, 7)/1260 for n in (0..30)] # G. C. Greubel, Dec 17 2021
A296619
The number of nonnegative walks of n steps with step sizes 1 and 2, starting at 0 and ending at 2.
Original entry on oeis.org
0, 1, 1, 6, 13, 52, 152, 550, 1813, 6453, 22427, 80330, 286895, 1038931, 3772801, 13807294, 50726893, 187332517, 694364517, 2583714636, 9644852364, 36115537269, 135607526865, 510496492338, 1926284451923, 7284476707597, 27602839227883, 104791979218326
Offset: 0
There are 6 walks of length 3:
__
| | __
__| |_ __| |_ __ _
| | | |__|
_| _| _|
2+2-2=2 2+1-1=2 2-1+1=2
__
__ _ | |_ _
| | | __| __ |
_| |__| _| _| |__|
2-2+2=2 1+2-1=2 1-1+2=2
-
B := n -> LinearAlgebra:-ToeplitzMatrix([0,1,1, seq(0, k=0..n-2)], symmetric):
seq((B(n)^n)(1, 3), n=0..27);
# alternative:
T:= proc(n,k) option remember;
if k < 0 or k > 2*n then return 0 fi;
procname(n-1,k-2)+procname(n-1,k-1)+procname(n-1,k+1)+procname(n-1,k+2)
end proc:
T(0,0):= 1:
seq(T(n,2),n=0..40); # Robert Israel, Dec 19 2017
-
b[n_] := ToeplitzMatrix[Join[{0,1,1}, ConstantArray[0,n-1]]];
Prepend[Table[MatrixPower[b[n],n][[1,3]], {n,20}], 0]
(* Andrey Zabolotskiy, Dec 19 2017 *)
-
Next(v)={vector(#v+2, i, if(i<3||i>#v-2, 0, v[i-2]+v[i-1]+v[i+1]+v[i+2]))}
my(v=vector(7,i,i==3)); for(n=1, 50, print1(v[5],", "); v=Next(v)) \\ Andrew Howroyd, Dec 18 2017
A277248
Number of planar walks starting at (1,1), ending at (3n,0), remaining in the first quadrant and using steps (-1,2) and (2,-1).
Original entry on oeis.org
1, 2, 6, 24, 108, 528, 2724, 14616, 80760, 456552, 2628504, 15360216, 90879096, 543336912, 3277586136, 19924733088, 121943223576, 750756116376, 4646484480552, 28892787031008, 180420486241776, 1130930538186360, 7113550964713848, 44885329202906448
Offset: 1
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
- M. Bousquet-Mélou, M. Petkovsek, Walks confined in a quadrant are not always D-finite, Theoretical Computer Science, 307(2003): 257-276.
- Ira M. Gessel, A probabilistic method for lattice path enumeration, Journal of statistical planning and inference, 14 (1986), 49-58.
-
b:= proc(l) option remember; `if`(l=[1$2], 1, add((p->
`if`(p[1]<0, 0, b(p)))(sort((l-x))), x=[[-1, 2], [2, -1]]))
end:
a:= n-> b([0,3*n]):
seq(a(n), n=1..30); # Alois P. Heinz, Oct 06 2016
-
b[l_List] := b[l] = If[l == {1, 1}, 1, Sum[Function[p, If[p[[1]]<0, 0, b[p]]][Sort[l-x]], {x, {{-1, 2}, {2, -1}}}]]; a[n_] := b[{0, 3n}]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Dec 04 2016 after Alois P. Heinz *)
A270174
a(n) is the number of different ways to seat a set of n married male-female couples at a straight table so that men and women alternate and every man is separated by at least two men from his wife.
Original entry on oeis.org
0, 0, 0, 0, 240, 8640, 584640, 40239360, 3493808640, 364941158400, 45683021260800, 6754660222464000, 1166167699041945600, 232618987254682828800, 53114643986227439616000, 13768242163527512973312000, 4021980517038414919532544000, 1315337131173516220415213568000
Offset: 1
A267060
a(n) = number of different ways to seat a set of n married male-female couples at a round table so that men and women alternate and every man is separated by at least d = 2 men from his wife.
Original entry on oeis.org
0, 0, 0, 0, 24, 240, 22320, 1330560, 112210560, 11183235840, 1340192044800, 189443216793600, 31267307962598400, 5964702729085900800, 1303453560329957836800, 323680816052170536960000, 90679832709074132299776000, 28473630606612014817337344000
Offset: 1
For d=1, the sequence a_{n} is the classical menage sequence A094047.
For d=2 (the current sequence), the F(n)s are 0, 0, 0, 0, 1, 2, 31, 264, 2783, 30818, 369321, ... which is A004307(n) then the sequence a_{n} is 0, 0, 0, 0, 24, 240, 22320, 1330560, 112210560, 11183235840, 1340192044800,...
For d=3, the F(n)s are 0, 0, 0, 0, 0, 0, 1, 2, 78, 888, 13909, ... which is A184965, and a(n) = (n-1)!*A184965(n).
- G. Polya, Aufgabe 424, Arch. Math. Phys. (3) 20 (1913) 271.
- John Riordan. The enumeration of permutations with three-ply staircase restrictions.
- Alois P. Heinz, Table of n, a(n) for n = 1..253
- E. Rodney Canfield and Nicholas C. Wormald, Menage numbers, bijections and P-recursiveness, Discrete Mathematics, 63 (2--3)(1987): 117--129.
- Bruno Codenotti, Giovanni Resta, On the permanent of certain circulant matrices, in Algebraic Combinatorics and Computer Science. 513-532. 2001.
- Feng Jishe, Illustration
- Yiting Li, Ménage Numbers and Ménage Permutations, Journal of Integer Sequences, Vol. 18 (2015), #15.6.8.
- M. Marcus and H. Mint, On the relation between the determinant and the permanent, Illinois J. Math. 5 (1961): 376-381.
- N. Metropolis, M. L. Stein, P. R. Stein, Permanents of cyclic (0,1) matrices, J. Combin. Theory, 7 (1969), 291-321.
- Giovanni Sburlati, On the values of permanents of (0,1) circulant matrices with three ones per row, Linear Algebra and its Applications. 408 (2005) 284--297.
- Vladimir Shevelev, Peter J.C. Moses, The menage problem with a fixed couple, arXiv:1101.5321 [math.CO], 2011-2015.
- L. G. Valiant, The complexity of computing the permanent, Theoret. Comput. Sci. 8 (1979): 189-201.
- Vijay V. Vazirani, Milhalis Yannakakis, Pfaffian orientations, 0-1 permanents, and even cycles in directed graphs, Discrete Applied Mathematics, 25(1989): 179-190.
- M. Wyman and L. Moser, On the problème des ménages, Canad. J. Math., 10 (1958), 468-480.
-
b[n_, n0_] := Permanent[Table[If[(0 <= j - i && j - i < n - n0) || j - i < -n0, 1, 0], {i, 1, n}, {j, 1, n}]];
A004307[n_] := b[n, 4];
a[n_] := (n - 1)!*A004307[n];
Array[a, 18] (* Jean-François Alcover, Oct 08 2017 *)
Comments