cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277280 Maximal coefficient in Hermite polynomial of order n.

Original entry on oeis.org

1, 2, 4, 8, 16, 120, 720, 3360, 13440, 48384, 302400, 2217600, 13305600, 69189120, 322882560, 2421619200, 19372953600, 131736084480, 790416506880, 4290832465920, 40226554368000, 337903056691200, 2477955749068800, 16283709208166400, 113985964457164800
Offset: 0

Views

Author

Vladimir Reshetnikov, Oct 08 2016

Keywords

Examples

			For n = 5, H_5(x) = 32*x^5 - 160*x^3 + 120*x. The maximal coefficient is 120 (we take signs into account, so -160 < 120), hence a(5) = 120.
		

Crossrefs

Cf. A059343, A277281 (ignoring signs).

Programs

  • Mathematica
    Table[Max@CoefficientList[HermiteH[n, x], x], {n, 0, 25}]
  • PARI
    a(n) = vecmax(Vec(polhermite(n))); \\ Michel Marcus, Oct 09 2016
    
  • Python
    from sympy import hermite, Poly
    def a(n): return max(Poly(hermite(n, x), x).coeffs()) # Indranil Ghosh, May 26 2017