A277280 Maximal coefficient in Hermite polynomial of order n.
1, 2, 4, 8, 16, 120, 720, 3360, 13440, 48384, 302400, 2217600, 13305600, 69189120, 322882560, 2421619200, 19372953600, 131736084480, 790416506880, 4290832465920, 40226554368000, 337903056691200, 2477955749068800, 16283709208166400, 113985964457164800
Offset: 0
Keywords
Examples
For n = 5, H_5(x) = 32*x^5 - 160*x^3 + 120*x. The maximal coefficient is 120 (we take signs into account, so -160 < 120), hence a(5) = 120.
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..710
- Vaclav Kotesovec, Plot of a(n+1)/(a(n)*sqrt(n)) for n = 1..10000
- Eric Weisstein's World of Mathematics, Hermite Polynomial.
- Wikipedia, Hermite polynomials.
Programs
-
Mathematica
Table[Max@CoefficientList[HermiteH[n, x], x], {n, 0, 25}]
-
PARI
a(n) = vecmax(Vec(polhermite(n))); \\ Michel Marcus, Oct 09 2016
-
Python
from sympy import hermite, Poly def a(n): return max(Poly(hermite(n, x), x).coeffs()) # Indranil Ghosh, May 26 2017